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Abstract—Nanosatellite constellations equipped with sensors
capturing large geographic regions provide unprecedented op-
portunities for Earth observation. As constellation sizes increase,
network contention poses a downlink bottleneck. Orbital Edge
Computing (OEC) leverages limited onboard compute resources
to reduce transfer costs by processing the raw captures at the
source. However, current solutions have limited practicability due
to reliance on crude filtering methods or over-prioritizing partic-
ular downstream tasks. This work presents an OEC-native and
task-agnostic feature compression method that preserves predic-
tion performance and partitions high-resolution satellite imagery
to maximize throughput. Further, it embeds context and leverages
inter-tile dependencies to lower transfer costs with negligible over-
head. While the encoding prioritizes features for downstream tasks,
we can reliably recover images with competitive scores on quality
measures at lower bitrates. We extensively evaluate transfer cost
reduction by including the peculiarity of intermittently available
network connections in low earth orbit. Finally, we test the fea-
sibility of our system for standardized nanosatellite form factors.
We demonstrate that the proposed approach permits downlinking
over 100× the data volume without relying on prior information
on the downstream tasks.

Index Terms—Edge computing, edge intelligence, orbital edge
computing, low earth orbit, satellite inference, data compression,
learned image compression, neural feature compression.

I. INTRODUCTION

THE development of commercial ground stations [1] and
the advancement in aerospace technology has enabled

the emergence of nanosatellite constellations [2] in low earth
orbit (LEO) as a novel mobile platform. The standardization
of small form factors, such as CubeSat [3], reduces launch
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costs, allowing for frequent updates and deployments. Manu-
facturers typically equip satellites with sensors to capture large
geographic regions. The downlinked satellite imagery enables
Earth observation (EO) services with socially beneficial applica-
tions, such as agriculture [4] and disaster warning [5]. Nonethe-
less, most constellations follow a “bent pipe” architecture where
satellites downlink raw sensor data for processing in terrestrial
data centers. Notably, given the constraints of orbital dynamics,
satellites may only establish a connection for a few minutes.
For example, the Dove High-Speed Downlink (HSD) system [6]
provides segments with volumes as low as 12 GB during a single
ground station pass.

As constellation sizes and sensor resolutions increase, down-
link bandwidth cannot keep up with the accumulating data
volume [7], [8]. Additional ground station equipment may pre-
vent link saturation. However, building and maintaining them,
including licensing the necessary frequencies, is a significant
cost factor for satellite operation. As an alternative, Orbital Edge
Computing (OEC) proposes processing data at the source [9],
[10], [11], [12], [13]. Recent work on reducing bandwidth
requirements in OEC is roughly categorizable in aggressive
(task-oriented) filtering and compression [14]. The former relies
on subjective value measures that restrict their practicability
to coarse-grained tasks, such as de-duplication or cloud fil-
tering. The latter constrains entire missions to particular tasks
or prediction models. We argue that the limitations of existing
compression or other data reduction approaches are particularly
adverse to OEC.

First, the CubeSat design is intended for short-duration mis-
sions [3] (typically up to 3-5 years), and despite waning prices,
launching sensor networks in space is still associated with sub-
stantial logistical, administrative, and monetary costs. There-
fore, it seems undesirable to designate entire constellations
to a small subset of tasks and Deep Neural Network (DNN)
architectures. More pressingly, irrespective of whether current
codecs can prevent bottlenecks, they may undermine the ef-
fectiveness of entire missions. Precisely, the assumption that
prediction models only require a subset of information for image
reconstruction may lead to false confidence in a codec to reliably
discern the salient signals. We argue the opposite holds, i.e.,
when the objective is to accommodate arbitrary downstream
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tasks with prediction models instead of human experts, there
is less potential for rate reductions. Intuitively, two seemingly
visually identical images may have subtle differences in pixel
intensities, which a prediction model could leverage to overcome
physiological restrictions.

In summary, three conflicting objectives aggravate the chal-
lenges for OEC: (i) maximizing downlinking captures, (ii) en-
suring the value of the captures by relying on as few assumptions
on downstream tasks as possible, and (iii) minimizing the risk
from unpredictable adverse effects on current and future pre-
diction models. To this end, we propose drawing from recent
work on neural feature compression with Shallow Variational
Bottleneck Injection (SVBI) [15], [16], [17]. The idea of SVBI
is to reduce discarding information necessary for arbitrary,
practically relevant tasks by targeting the shallow representa-
tion of foundational models as a reconstruction target in the
rate-distortion objective. In other words, rate reductions come
from constraining the solution space with abstract high-level
criteria rather than reifying target tasks with an explicit defini-
tion of value or expert-crafted labels. We investigate whether
the SVBI framework is suitable for EO from a compression
perspective and identify lower-level system considerations given
the oppressive constraints of OEC. Then, we apply our insights
to introduce a Tile Holistic Efficient Featured Oriented Orbital
Learned (THE FOOL) compression method, which we will refer
to as FOOL for short. FOOL alleviates the challenges of OEC
by generalizing SVBI to improve compression performance
while introducing more specific methods that aid in meeting
the requirements of OEC and EO tasks. FOOL comprises a
profiler, a neural feature codec with a separate reconstruction
model, and a simple pipeline. The profiler identifies configu-
rations that maximize data size reduction, factoring in inter-
mittently available downlinks and the trade-off between pro-
cessing throughput and lowering bitrate from more powerful
but costlier transforms. The neural codec’s architecture includes
task-agnostic context and synergizes with the profiler’s objective
to maximize throughput with batch parallelization by exploiting
inter-tile spatial dependencies. The pipeline minimizes overhead
by CPU-bound pre- and post-processing with concurrent task
execution.

We perform in-depth experiments to scrutinize our approach
with a wide range of evaluation measures by emulating condi-
tions on a testbed with several edge devices. Our results show
that FOOL is viable on CubeSat nanosatellites and increases
the downlinkable data volume by two orders of magnitude
relative to bent pipes at no loss on performance for EO. Unlike a
typical task-oriented compression method, it does not rely on
prior information on the tasks. Additionally, FOOL exceeds
existing SVBI methods with an up to 2.1× bitrate reduction.
Lastly, the reconstruction model can map features from the
compressed shallow feature space to the human interpretable
input space. The resulting images compete with state-of-the-art
learned image compression (LIC) models using mid-to-high
quality configurations on PSNR, MS-SSIM, and LPIPS [18]
with up to 77% lower bitrates. We open-source the core

compression algorithm1 as an addition to the community. In
summary, our main contributions are:
� Demonstrating the inadequacy of image codecs for EO with

satellite imagery and that the general SVBI framework [17]
can address these limitations.

� Significantly improving compression performance of ex-
isting methods with novel components that embed ad-
ditional modality and capture inter-tile dependencies of
partitioned images.

� Introducing a reconstruction component that can recover
high-quality human interpretable images from the com-
pressed latent space of shallow features.

To the best of our knowledge, this work is the first to elaborate
on the risk of image codecs on EO that distinctly rely on fine-
grained details. Crucially, it proposes a solution approach that
assumes reconstruction for human interpretability as a subset
of objectives that prioritize maintaining the integrity of model
predictions.

Section II compares relevant work addressing the downlink
bottleneck. Section III motivates our approach by describing
current challenges. Section IV describes the profiling strategy
and compression pipelines. Section V introduces the FOOL’s
compression method. Section VI details the methodology and
evaluates FOOL against numerous baselines. Section VII trans-
parently discusses limitations to shape directions for future
research. Lastly, Section VIII concludes the work.

II. RELATED WORK

A. Collaborative Inference and Data Compression

The Deep Learning aspect of our method draws from recent
advancements in collaborative inference [19] and data compres-
sion [20]. The underlying compression algorithm and objective
functions are derived and extended from our previous work [17],
which re-formulizes the distortion term from lossy compres-
sion methods [21] and deploys lightweight models suitable for
resource-constrained mobile devices. Besides introducing novel
components to further lower transfer costs, FOOL considers
the diverging requirements due to intrinsic differences between
terrestrial and orbital remote sensing.

B. Preventing Link Saturation With Orbital Inference

The system aspect of our method aligns best with work
focusing on getting the data to the ground for further process-
ing instead of performing inference on board [9], [12], [22],
[23]. We emphasize the high variability among fundamental
design principles for OEC, as it is an emerging field, and a
comprehensive literature review is not within the scope of this
work. In summary, we found that current approaches focus
on designing complex systems tailored to specific conditions
and rely on strong assumptions limiting their applicability.

1 [Online]. Available: https://github.com/rezafuru/the-fool

https://github.com/rezafuru/the-fool
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Moreover, they may adequately model the system conditions
but run experiments on toy tasks or on low-resolution images.
Contrastingly, FOOL is a holistic approach to the downlink
problem that considers satellite systems and imagery properties.
The following discusses the approaches we find most promising
as representatives in their general direction.

Gadre et al. introduce Vista [24], a Joint Source Channel
Coding (JSCC) system for LoRa-enabled CubeSats designed
to enhance low-latency downlink communication of satellite
imagery and DNN inference. It shows significant improve-
ments in image quality and classification performance through
LoRa-channel-aware image encoding. Moreover, the evaluation
assumes simple tasks that are not representative of practical EO.
In contrast, FOOL decouples image recovery from the initial
compression objective and ensures task-agnostic preservation
of information.

Lu et al. introduce STCOD [25], a JSCC system for efficient
data transmission and object detection in optical remote sensing.
STCOD integrates satellite computing to process images in
space, distinguishing between regions of interest (ROIs) and
backgrounds. It shows promising results with a block-based
adaptive sampling method, prioritizing transmitting valuable
image blocks using fountain code [26]. The caveat is that ROI
detectors that can reliably prevent predictive loss for downstream
tasks require strong biases regarding sensor and task properties.
FOOL includes task-agnostic context, with significantly less
overhead and more robustness towards varying conditions than
an ROI detector. Furthermore, it is end-to-end optimized with
the other compression model components without relying on the
same biases or expert-crafted labels.

Thematically, our work resembles Kodan by Denby et al. [27]
the closest. Like FOOL, Kodan treats channel conditions as
an orthogonal problem and primarily focuses on source coding
to address the downlink and computational bottlenecks. Kodan
uses a reference application for satellite data analysis and a rep-
resentative dataset to create specialized small models. Once in
orbit, it dynamically selects the best models for each data sample
to maximize the value of data transmitted within computational
limitations. Kodan’s excellent system design is promising but
relies on assumptions that hinder practicability and the potential
for meaningful rate reductions. Unlike Kodan, we follow a
different design philosophy by treating the downlink bottleneck
primarily as a compression problem. Further, we do not treat the
computational deadline as a hard temporal constraint to decouple
the method to a particular system design, as reflected by FOOL’s
profiler measuring key performance indicators on the pixel level.
Given hardware limitations, the aim is to reduce transfer costs
by balancing the lower bitrate of more powerful encoders and
the gain in processing throughput of more lightweight encoders.

III. BACKGROUND & PROBLEM FORMULATION

A. The Downlink Bottleneck

Downlink bottlenecks occur when the data volume exceeds
the bandwidth within a downlink segment during a single pass.
We formalize a model sufficient for our purposes by considering
link conditions and sensor properties of satellites belonging to
a constellation. A constellation is defined as C = (L,S, I, f)

where L is a link to communicate with a ground station and S is
a set of satellites. The link is determined by its expected downlink
rate, measured in megabits per second (Mbps). The function f :
S → I maps each satellite s ∈ S to an interval where it passes
the downlink segment into disjoint subsets G = {Gi|Gi = {s ∈
S|f(s) = i}, i ∈ I}, such that

⋃
Gi = S and

⋂
Gi = ∅. The

link capacity Vlink is the bandwidth available per pass and is
determined by the link rate and the interval range. Satellites
S = (Rorbit, Srate, Sspatial, Sbands, Sradio, Sfov) are equipped with
a sensor, and its properties determine the volume per capture.

Vcapture =

Total Pixels︷ ︸︸ ︷
R2

orbit · tan2(Sfov)

Sw · Sh
·Sbands · Sradio︸ ︷︷ ︸

Bits per Pixel

(1)

The radiometric resolution Sradio and number of bands Sbands

determine the downlink cost per pixel in bits. The orbit Rorbit,
sensor spatial resolution Sspatial = Sh × Sw, and field of view
Sfov determine the number of pixels per capture. The number of
captures depends on the time to complete an orbit

Torbit = 2π

√
(Rorbit +Rearth)

3

GM
(2)

and on the capture rate Srate. G is the gravitational constant and
M is the earth’s mass. The orbit Rorbit is usually around 160 to
800 kilometers for LEO satellites. For reference, Rorbit is 786
kilometers for Sentinel-2 [28]. Finally, the number of captures
from all satellites within the segmentation group determines the
total volume per pass.

Vpass =
∑

s(i)∈Gj

Torbit · S(i)
rate · V

(i)
capture (3)

The superscript (i) denotes the costs associated with a satellite
(i). For constellations with homogenous sensors Vcapture is a
static value. Notice that Vpass scales linearly by the constella-
tion size and a constant factor c for overlap occurrences, i.e.,
|Gj | = |S|

c . To determine c for a constellation, we must calculate
the minimum angle between satellites β∗. Assuming a single
ground station at the Earth’s North Pole and given the minimum
communication elevation θ

β∗ = 2×(180◦ − (θ + 90◦)− arcsin

(
Rearth · sin (90◦ + θ)

Rorbit +Rearth

)
(4)

For example, consider a constellation at Rorbit = 790, 000
meters altitude with a minimum elevation θ = 25◦ such that
β∗ ≈ 22.52◦. Then, c = 360◦

22.52◦ ≈ 16, i.e., to prevent any interval
sharing, the constellation size may not exceed 16 satellites.

In short, the aim is to facilitate cost-efficient scaling of con-
stellations by increasing bandwidth value and substantially re-
ducing reliance on building additional infrastructure. That is, we
require an encoding scheme enc, such that Venc < Vlink. Note
that a single satellite may experience a bottleneck even if the
constellation is sparse enough to prevent interval sharing [27].
Say, each s ∈ S is equipped with a sensor using approximate
Sentinel-2 configurations [28] by setting a multispectral sensor
for (near-) visible light to Sbands = 4, Sradio = 12 Sfov = 21◦,
Sh×w = 10× 10, and five captures per pass. With |S| ≤ 16,
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the volume for each pass is 790,0002·tan2(10.5◦)
100 · 4 · 12 · 5 ≈ 410

GB. To prevent a bottleneck even without sharing an interval
and using a higher-end link, such as WorldView-3 [29] where
Vlink = 90 GB per pass, the enc needs to decrease the data
volume by a factor of 4.5.

There are two overarching objectives for a codec and the sys-
tem we deploy its encoder. The system’s objective is to process
and encode large volumes of high-dimensional data, given the
physical limitations of LEO (nano-) satellites. A 3 U nanosatel-
lite following the CubeSat standard is limited to 10 cm× 10 cm×
30 cm and 4 kg [30] with restricted power supply by using
solar harvesting [31]. The compression objective is to achieve a
sufficiently low bitrate while maintaining the data’s integrity.
The following elaborates on the challenges of conceiving a
method that fulfills our criteria and the limitations of applying
existing codecs.

B. Limitations of Codecs

Given remote image captures and a set of unknown associated
object detection tasks, we seek a transformation of the captures
into representations that minimize transfer costs and loss of
information that may impact any detection tasks. We refer to
generalizability as a measure of how well a method can minimize
the predictive loss on unknown detection tasks. For example, a
purely task-oriented encoding (e.g., [32]) can retain information
for a set of explicitly defined tasks. Still, it does not generalize
as the transformed data is unusable for non-overlapping tasks
Besides bent pipes, lossless codecs are the only approach with
easily understood guarantees on generalization. Nevertheless,
lossless compression cannot adequately address the downlink
bottleneck due to theoretical lower bounds. Promising alterna-
tives are lossy methods that relax the requirement of relying on
identical reconstruction for generalization. More formally, given
a distortion measure D, a constraint Dc bounds the minimal
bitrate to [33]:

min
PY |X

I(X;Y ) s.t. D(X,Y ) ≤ Dc, (5)

where I(X;Y ) is the mutual information and is defined as:

I(X;Y ) =

∫ ∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy. (6)

Learned Image Compression (LIC) replaces the typically linear
transformation of handcrafted codecs with nonlinear ones to
reduce dependencies from sources that are not jointly Gaus-
sian [21]. The sender applies a parametric analysis transform
ga(x; θ) into a latent y, which is quantized to a latent with
discrete values ŷ. Then, an entropy coder losslessly compresses
ŷ using a shared entropy model pŷ. The receiver decompresses
ŷ and passes it to a parametric synthesis transform gs(ŷ;φ)
to recover a distorted approximation to the input. To capture
leftover spatial dependencies of ŷ, more recent work adds side
information with a hyperprior z [34] and a context model [35].
Including side information requires two additional paramet-
ric transforms ha(ŷ; θh) and hs(ẑ;ψh). Despite efficient LIC
methods [36] consistently outperforming handcrafted codecs
on standardized benchmarks, the results are deceptive when
assessing the impact on downstream tasks. To provide further

Fig. 1. Comparing effect of codec and additive noise.

explanation, we perform a preliminary experiment that contrasts
the predictive loss with additive noise and codec distortion and
summarize results in Fig. 1.

We download pre-trained weights [37] for the ImageNet [38]
classification task of three popular architectures [39], [40], [41].
First, we compute the expected Peak Signal-To-Noise Ratio
(PSNR) of a popular LIC model [42] for each quality level
on the validation set. Then, we apply Additive White Gaussian
Noise (AWGN) on input to match the PSNR of a codec for
each quality level separately. Lastly, we measure the predictive
loss as the average difference between the accuracy of the
original and processed samples. Notice that the predictive loss
on the distorted input is significantly worse than the noisy input.
Additive noise does not remove information; rather, it super-
imposes unwanted information. Conversely, lossy compression
intentionally discards information from signals, and two codecs
may achieve comparable rate-distortion performance despite
emphasizing different information to retain. Re-training model
weights on reconstructed samples may mitigate some predictive
loss, but only due to adjusting prediction to input perturbations
and error-prone extrapolation of lost information.

Particularly, for EO with satellite imagery that spans large ge-
ographic areas, we stress the unsuspecting danger of lossy com-
pression, which is compounded with learned transforms [21],
where it is challenging to understand behavior. The ability to
differentiate between intensities beyond the capability of hu-
mans may explain why detection models can outperform do-
main experts. Accordingly, we should assume that lossy codecs
may discard information where even experts cannot reliably
verify the impact on machine interpretability. For example,
suppose a codec that reduces the rate by focusing on preserving
coarser-grained structures. Then, tasks that rely on assessing the
environment for fine-grained object classes will lack background
information (e.g., inferring region by tree species with subtle
color variations).

Current limitations of image codecs put operators in a difficult
position, especially for EO. The decision falls between (a com-
bination of) lossless codecs, applying crude filtering methods,
or attempting to reduce the bitrate with lossy codecs, remaining
uncertain about whether the codecs retain information necessary
in real conditions. As a solution, we advocate for Shallow
Variational Bottleneck Injection (SVBI) [17], which prioritizes
salient regions for (near) arbitrary high-level vision tasks.
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Fig. 2. Head distillation distortion loss.

C. Shallow Variational Bottleneck Injection

SVBI trains neural codecs by replacing the distortion term of
the rate-distortion objective of variational image compression
models [34] with head distillation (HD) [15], [16], [17], [43],
[44]. Fig. 2 illustrates an example where the HD distortion mea-
sure penalizes a compression model for not sufficiently approx-
imating the shallow representation of a pre-trained foundational
model. We define a foundational model as a pre-trained DNN
that can accommodate multiple tasks by attaching predictors or
fine-tuning the deeper layers. In Knowledge Distillation (KD)
terminology, the codec is referred to as the student and the
shallow layers of a foundational model as the teacher. Note that
KD is not this work’s focus, as HD diverges from the typical
KD objective. The intuition behind SVBI is that if a codec can
reconstruct the representation of a foundational model, then the
representation is sufficient for at least all tasks associated with
that model.

1) The Effectiveness of Shallow Features: Readers may rea-
sonably assume that using the representation for one particular
network architecture instead of the input as the distortion mea-
sure is more restrictive for two reasons.

First, the features are not human-readable, i.e., we cannot
overlay the bounding boxes on the images. We could infer
the global coordinates to present boxes overlaid on previously
captured satellite imagery. This may suffice for observing (semi-
) permanent objects (e.g., landmarks) but certainly not for
ephemeral or moving objects (e.g., tracking the movement of
vessels). Second, even if the trend toward transfer learning
with foundational models [45], [46] can accommodate various
predictors, client preferences for architectures may vary.

We argue that by targeting shallow representations, both
limitations can be addressed. View an n-layered feed-forward
neural network as a Markov chain of successive representations
Ri, Ri+1 [47]:

I(X;Y ) ≥ I (R1;Y ) ≥ . . . ≥ I (Rn;Y ) ≥ I(Ỹ ;Y ) (7)

The mutual information I(X;Ri)will likely decrease relative
to the distance between the input and a representation. This loss
stems from layers applying operations that progressively restrict
the solution space for a prediction, particularly for discriminative

Fig. 3. Discarding information in discriminative tasks.

tasks. That is, the deeper the representation, the more informa-
tion we lose regarding X:

I(X;X) ≥ I(R1;X) ≥ · · · ≥ I(Rn−1;X) ≥ I(Rn;X) (8)

Fig. 3 visualizes the trade-off. We extract the features from a
ResNet network with weights trained on the ImageNet [38]
classification task and recover the original image by training
separate reconstruction models for each marked location. Sec-
tion V-F elaborates on the reconstruction. Notice that models at
shallow layers can recover the input with high similarity, but the
recovery progressively worsens as the path distance increases.
Now assume a discriminative model (e.g., a ResNet for im-
age classification)M = (H, T ) with separate shallow H from
deeper layers T as disjoint subsets, such that H(X) = H (i.e,
mapping input to shallow features) and M(X) = T (H(X)).
Further, given a codec c = (enc, dec) where dec(enc(X)) = H̃
is an approximation of H(X). Then, H̃ is a sufficient approxi-
mation of H if T (H̃) results in lossless prediction, i.e., no drop
in prediction performance relative to T (H). In other words,
a sufficient representation in the shallow latent space results
in high similarity in the deep latent space between T (H) and
T (H̃). Consider that similarity in the deep latent space coincides
with high similarity for human perception in the input space [18].
Therefore, the encoder output enc(X) should retain sufficient
information to reconstructX with quality comparable toH(X),
as exemplified in Fig. 3. Finally, since enc(X) sufficiently
approximates H , it should be possible to sufficiently approx-
imate the shallow representation of any modelM′ = (H′, T ′)
if I(H(X), X) ≈ I(H′(X), X).

2) Rate Reductions by Task Specificity: The idea of task-
oriented communication is that messages for model prediction
may require less information than human domain experts, i.e.,
that it should be possible to reduce bitrate by not (exclusively) us-
ing input reconstruction as the distortion measure. We argue that
this assumption contradicts empirical evidence demonstrating
models outperforming human experts in various image-related
tasks, i.e., machines can detect signals and patterns that humans
physiologically or intellectually cannot. Rather, the opposite
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Fig. 4. High-level inference request flow.

should hold, i.e., when compressing for quality using domain
experts as judges, we should see more potential for rate savings,
not less. The claim is consistent with the results in Fig. 1 where
codecs with high reconstruction quality result in images that
are deceptively similar to the input (details in Section VI-C).
Conclusively, rate reductions are from task specificity of the
distortion measure, irrespective of the input interface, whether
it is a particular layer of a DNN architecture, human receptors,
or textual encoding. Note that this holds, even if when limiting
measures to discriminative task objectives without any image re-
construction. Besides visualizing (8), the input image illustrates
a practical example. The frog subset of ImageNet distinguishes
between Tree Frogs, Bullfrogs, and Tailed Frogs. Since these
frog species have distinct figures and dominant colors, the
more delicate characteristics of a tree frog are redundant for
ImageNet classification. The network gradually discards infor-
mation regarding the fine-grained blue-yellow colored patterns,
permitting only the recovery of general shape and environment
from the deep features. The deeper the features, the less structure
and detail are present, which may be redundant for the task. Now,
suppose training a codec where the encoder retains the minimal
information necessary to reconstruct the output of the deepest
layers for a classification task (e.g., similar to Vista [24]). Then,
we can reduce the transfer cost to as low as log2 (#labels) with-
out predictive loss. However, we may lack the information for
other tasks, i.e., there is a trade-off between generalization and
the lower bound on the bitrate. In contrast, targeting shallow fea-
tures for compression may strike a balance between aiming to re-
tain information for all possible downstream tasks and only em-
phasizing the salient regions for the tasks associated with a foun-
dational model. Arguably, the limitation is negligible, as main-
tainers will train foundational models with useful tasks in mind.

IV. THE FOOL’S SYSTEM DESIGN

A. Compression and Prediction Request Flow

Fig. 4 illustrates a high-level view for serving requests.
For samples processed by FOOL, there is a single encoder.

The output ŷ is forwarded to the detection pipeline, skipping the
shallow layers. The detection pipeline for a single forward pass
consists of a decoder, backbone and predictor. There may be mul-
tiple backbones the client can choose from, and each backbone
may have multiple predictors. A decoder transforms ŷ into an in-
put representation for a particular backbone. A predictor outputs
bounding boxes for a specified task. An image reconstruction
model optionally restores the latent to a human-interpretable
image to overlay the bounding boxes. Samples downlinked with

bent pipe or some image codec are forwarded to the shallow
layers, skipping the corresponding decoder and reconstruction
model. This section focuses on the pipeline, before Section V
introduces the compression method.

B. Profiling Compression Pipelines for OEC

A common challenge for operators is to determine whether
reported performance regarding resource usage or throughput
from the latest advancements generalizes to their target hard-
ware. This problem stems not from a lack of rigor by authors
but from the sheer heterogeneity of the AI accelerator land-
scape [48]. Graph compilers and other vendor-specific opti-
mizations (e.g., TensorRT,2 Apache TVM3) further complicate
evaluation, with varying methods for operator fusion, graph
rewriting, etc. Consequently, FOOL includes a simple profiling
and evaluation strategy that operators may run before deploy-
ment. Notably, in contrast to existing work that partitions images
to match the input size of a particular application, the profiler
regards the importance of spatial dimensions for resource effi-
ciency. The purpose of the profiler is to determine a configu-
ration that maximizes throughput. While throughput evaluation
is straightforward, how to measure it (e.g., images/second) is
not necessarily obvious, particularly for (neural) compression
pipelines.

First, terrestrial and LEO remote sensing with constrained
sensor networks demand resource-conscious methods, but in
LEO, downlinks are only available within segments. Due to
memory and storage constraints, devices must process samples
according to a sensor rate, i.e., a prolonged interval between
incoming samples. Hence, the objective in LEO is to maximize
the number of pixels the accelerator can process before reaching
a downlink segment, given a time constraint for a single sample
(i.e., “frame deadline” [27]). For example, assume a cheaper
and a costlier compression model where both models meet the
frame deadline. Applying the latter results in half the bitrate but
thrice the inference time. Using the former is beneficial in most
network conditions for real-time terrestrial applications since it
results in a lower end-to-end request latency. In contrast, apply-
ing the latter in LEO may be advantageous, as finishing earlier
results in the needless idle time of resources. Second, satellite
imagery has substantially higher resolution than captures from
most terrestrial sensor networks. A standard method to improve
throughput for high-dimensional images is parallel processing
with tile partitioning. The distinction is that there is more control
over the spatial dimensions and the batch size. Nonetheless,
a caveat is the friction between a model’s size and the input
size. Increasing the width (e.g., the number of feature maps
output by a convolutional layer) of a neural codec’s parametric
transforms may result in better compression performance but
lower processing throughput. In summary, we require a measure
that includes (i) the tile spatial dimensions, (ii) batch size, and
(iii) the capacity-compression performance trade-off.

We can address the requirements (i) and (ii) by measuring
throughput as pixels processed per second (PP/s). To motivate

2 [Online]. Available: https://developer.nvidia.com/tensorrt
3 [Online]. Available: https://tvm.apache.org

https://developer.nvidia.com/tensorrt
https://tvm.apache.org
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Fig. 5. Contrasting throughput measures.

the need to expand on PP/s for (iii), we demonstrate the friction
between model width, input size, and batch size using the
convolutional encoder in [17] consisting of three downsampling
residual blocks (Section V-C). Fig. 5 summarizes the results
as the average of 100 repetitions with progressively increas-
ing width. Notice how evaluating img/s always favors smaller
spatial dimensions and disregards batch size and model width.
In contrast, PP/s reveals that the optimal spatial dimension is
around 500× 500 but will naturally favor smaller models, as it
does not consider that wider models may reduce transfer costs.
To alleviate the limitations of PP/s, we measure Transfer Cost
Reduction per Second (TCR/s) as:

TCR/s =
Image Dimension
Seconds per Batch︸ ︷︷ ︸

PP/s

× (bppraw − bppcodec) (9)

The measure now includes the compression performance
as the difference between the expected bits per pixel (bpp)
of compressed (bppenc) and uncompressed (bppraw) sensings.
The raw bpp value refers to the bit depth, i.e., the sensor’s
radiometric resolution and the number of bands. For example,
the radiometric resolution of Sentinel-2 is 12 bits [28], so
for three bands bppraw = 3 · 212. The advantage of TCR/s is
twofold. First, decoupling it from system-specific parameters,
such as sensor resolution or orbital period, permits drawing
generalizable insights regarding the relative trade-off between
codec overhead and bitrate reduction. Second, operators can still
assess the feasibility of the pipeline on target hardware and the
expected downlinkable data volume by running the profiler with
configurations that reflect deployment conditions.

C. Concurrent Task Execution

So far, this section has solely discussed the computational cost
of a codec’s parametric transforms without considering pre- and
post-processing. In particular, after applying the encoder trans-
forms, it is still necessary to entropy code the output to compress
the latent. Since FOOL’s entropy model is input adaptive, it
requires a range coder. Although more recent range coders are
efficient, they incur non-negligible runtime overhead. Therefore,
given the unforgiving conditions of OEC, we argue that the

Fig. 6. Network organization and components.

entropy coder cannot be neglected in the design process and
evaluation of a neural codec. FOOL virtually offsets the entire
runtime overhead with simple concurrent task execution. The
idea is to exploit the minimal interference of processes that draw
from different resource types. For three sequentially incom-
ing samples xi−1, xi, xi+1, FOOL executes CPU-bound pre-
processing ofxi+1, accelerator-bound inference ofxi, and CPU-
bound post-processing of xi−1. In this work, pre-processing
corresponds to tiling the samples, and post-processing to entropy
coding with rANS [49], [50]. Concurrently to inference xi−1 on
the accelerator, a process starts tilingxi. After inference onxi−1,
ŷ, ẑ, σ̂, μ̂ (Section V-G) are persisted on the file system. Then,
a separate process loads the data and losslessly compresses ŷ, ẑ
with an entropy coder. We expect minimal interference between
the processes, resulting in virtually no PP/s decrease.

V. THE FOOL’S COMPRESSION METHOD

We design the compression method based on three criteria.
First, it should synergize with the profiling strategy (Section
IV-B). Second, it should embed context for feature compression
without favoring a particular downstream task. Third, it should
prioritize the integrity of downstream tasks but allow recovering
human interpretable images without increasing the bitrate.

A. Model Building Blocks

For a focused evaluation and transparent discussion on the
efficacy of our contributions in Section VI, we restrict FOOL to
basic layer types and exclude methods from work on efficient
neural network design (e.g., dilated convolutions to increase the
receptive field). Moreover, basic layer types ensure widespread
support across hardware vendors [48].

Fig. 6 illustrates the building blocks of the codec architecture
we will introduce in Section V-D and how it organizes the
primary networks for transform coding (Section III-B). The
primary networks have four stages that control the depth and
width. Each stage has at most one lightweight attention block
and at least one residual block. A residual block optionally up
or downsamples the spatial dimensions. A stage’s width and



6754 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 8, AUGUST 2025

depth parameters configure the number of channels and residual
blocks within a stage.

B. Capturing Inter-Tile Dependencies

The input to the compression model are tiles that were parti-
tioned to maximize processing throughput (Section IV-B), i.e.,
we consider an input x as a list with T separate image ten-
sors xt ∈ R

C×H×W . To decrease transfer costs further, FOOL
leverages the prior knowledge from partitioning (i.e., tiles cor-
responding to the same image) in two ways. The first is via
weight-sharing with 2D Residual Blocks by reshaping the tensor
to T ·B × C ×H ×W . This way, we include further inductive
bias during training by forward passing T similar tensors before
each backpropagation. The second is with an inter-tile attention
mechanism. Since self-attention from transformer architectures
is prohibitively expensive for our purposes, even when apply-
ing it on downsampled representations as proposed in [51].
Therefore, we modify and extend the lightweight convolutional
attention layer from [52]. The layer stacks residual units to
increase the receptive field that primarily emphasizes local inter-
actions. FOOL partially replaces the need for global operations
by assuming tiles to have “pseudo-temporal” dependencies. In-
tuitively, partitioning single captures that span large geographic
areas may be similar to moving a video feed with large strides. In
particular, tiles within the same regions or biomes have global
dependencies. In the 3D version of the attention block from
Fig. 6, a residual unit consists of two 1× 1× 1 convolution and
a D × 3× 3 convolution in between. The kernel size for the
temporal dimension of attention layers (Section V-A) is set as
D = 3 for T < 5 and D = 5 for T ≥ 5.

The advantage of 3D layers over concatenating channels
and applying 2D convolutional operations (e.g., with chan-
nel attention [53]) is that it considerably reduces width. For
example, given a 3× 3 2D convolution with T × C in and
out channels. Then for T = 5 image tensors, with dimensions
C = 64, H = 128,W = 128, would require 5 · 64 · (3 · 3 · 5 ·
64 + 1) = 921, 920 parameters. Conversely, for a 5× 3× 3 3D
convolution with the same in and out channels, it would result
in 64 · (5 · 3 · 3 · 64 + 1) = 184, 384. Additionally, we reduce
the number of multiply-and-accumulates from approximately
15 million to 9 million. Besides lowering memory requirements,
this allows FOOL to scale model capacity with less friction
against processing throughput.

C. Task-Agnostic Context for Feature Compression

The leftover spatial dependencies after encoding are com-
monly around high-contrast areas. Consider that high-contrast
areas typically correspond to edges and other regions of interest,
i.e., keypoints.

As an example, Fig. 7 contrasts leftover pixel dependencies of
ŷ from a LIC model [35] to keypoints output by a KeyNet [54]
network. Therefore, we should further improve compression
performance with side information by embedding keypoints as
context for encoding as follows:

ŷ = Q (ga(x; θ)) (10)

Fig. 7. Leftover spatial dependencies (middle left), keypoints (middle right),
entropy heatmap (right).

ykp = fds (k(x)
 x;ωkp) (11)

yca = ac
(
ykp, ωca

)
(12)

ẑ = Q
(
ha

(
fca(ykp, ωca); θh

))
(13)

pŷ|ẑ (ŷ | ẑ) ← hs (ẑ;φh) (14)

h̃ = gs (ŷ;φ) (15)

where k is a keypoint extraction function k : R3×H×W →
R

1×H×W , fds is a parametric downsampling function fds :
R

1×H×W → R
C ′× H

2n ×
W
2n , andac is a single (2D) cross-attention

block (Fig. 6). The cross-attention block takes context as an
additional input for weighting the latent with attention scores.
For k, we use scores from a (frozen) pre-trained and simplified
KeyNet [54] due to its robustness in diverse environments and
low memory requirements (less than 6000 parameters). While
this method should generalize to LIC, it complements feature
compression exceptionally well and found quantizing and com-
pressing yca (i.e., h̃ = gs(Q(yca), ψ) further lowers the bitrate
without affecting task performance.

D. Compression Model Architecture

Fig. 8 illustrates the compression model’s complete architec-
ture. The dashed lines toQ indicate that we either quantize (and
subsequently compress) the base latent or the cross-attention
weighted latent.

For the case of passing yca to Q, we include an additional
residual unit after attention-weighting. We skip applying the
attention block to the highest input dimensions to reduce mem-
ory and computational costs. The non-linearity between the
layers is ReLU to reduce vendor dependency of results from the
system performance evaluation in Section VI-D. Residual blocks
are two stacked 3× 3 convolutions to increase the receptive
field with fewer parameters and a residual connection for better
gradient flow. For the remainder of the work, we refer to the
compression model as an encoder-decoder pair enc, dec. The
encoder comprises ga, ha, k, fds, ca, and the entropy coder. The
decoder consists of the gs and the entropy decoder. The entropy
model pẑ(ẑ) and hs are shared. Note that, despite deploying
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Fig. 8. The FOOL’s compression architecture.

more components on the constrained sender, the encoder has sig-
nificantly fewer parameters than the decoder since we increase
the width of the receiver-exclusive components.

E. Single Encoder With Multiple Backbones and Tasks

Analogous to [17], consider a set of n shallow and deep layers
pairs of backbones (i.e., foundational models):

Mf = (H1, T1) , (H2, T2) . . . (Hn, Tn) (16)

The shallow layers map a sample to a shallow representation,
i.e., Hi(x) = hi. Further, associate a separate set of m predic-
tors P = P1, . . .Pm to the non-shallow (i.e., deep) layers of
a backbone. Assume an encoder-decoder pair can sufficiently
approximate the shallow layer’s representation of a particular
backbone (i.e., dec(enc(x)) = h̃ ≈ hi). Then, inputting h̃ to
Ti, should result in the same predictions for all m predictors
associated to Ti. Since two shallow layers output different repre-
sentations (i.e., Hi(x) �= Hj), the encoder-decoder pair cannot
replace the shallow layers for anyHj where i �= j. Accordingly,
after training an initial encoder-decoder pair, FOOL instanti-
ates n− 1 additional decoders, resulting in a set of separate
dec1, dec2 . . . decn decoders, i.e., one for each target backbone.

F. Image Reconstruction

FOOL trains the compression and image reconstruction mod-
els in two stages. After training the compression model and
freezing encoder weights, it separately trains a reconstruction
model that maps ŷ to an approximation x̃ of the original sample
x.

1) Separate Training Over Joint Optimization: We could
reduce the distortion d(x, x̂) with a joint objective for training
the reconstruction and compression model. While the resulting
models would score higher on the sum of error benchmarks, the
added distortion term will result in higher bitrates. Instead, after
optimizing the encoder with the objective of SVBI, we freeze
the weights (i.e., “locking” in the rate performance). Then, we
leverage the high mutual information between shallow features
and the input to recover presentable approximations (Section
III-C2).

Image recovery is closely related to image restoration, such as
super-resolution or denoising. The component is exchangeable
with the state-of-the-art, as it is orthogonal to the compression
task. For this work, we select SwinIR [55] due to its relative
recency, computational efficiency, and simplicity.

2) Reconstruction Does Not Replace Decoders: Approxima-
tions from decoders (Section V-E) resulting in (near) lossless
prediction would evidence ŷ has sufficient information to recon-
struct a sample for the input layers that result in comparable task
performance. Hence, after training the encoder, we could replace
all decoders with the reconstruction model to approximate the
input sample. Nevertheless, sufficiency may not directly result
in lossless prediction since artifacts perturb the reconstructed
samples.

We could account for the perturbation by finetuning for a
relatively small number of iterations [17]. The downside is that
operators must maintain, store, and serve different versions of
the otherwise identical backbones for each client separately.
Worse, they may need to re-train the predictors of the various
downstream tasks for each backbone. Instead, we train small
decoders that directly map the low-dimensional encoder output
to an adequate representation, i.e., FOOL does not pass the
reconstruction to prediction models for downstream tasks. There
are two advantages to introducing multiple decoders over mul-
tiple backbone weights. First, the number of additional weights
operators must maintain only scales with supported backbones
and not the number of backbone-task pairs. Second, the small
decoder weights incur considerably less training and storage
overhead than the weights of massive backbones.

G. Loss Functions

FOOL’s training algorithm starts with extracting the shal-
low layers of a particular detection model (teacher). Then,
it freezes the encoder and trains newly initialized decoders
dec1, dec2, . . . decn using the corresponding teacher models
H1,H2, . . .Hm (i.e., target shallow layers).

1) Rate-Distortion Loss Function for SVBI: To simplify the
loss expression, we treat the components related to keypoints
as part of ha if we exclusively use it as a hint for the side-
information network. Alternatively, it may be used as the final
block of ga before quantizing and entropy coding the latent.
Analogous to the SVBI training objective [15], [17], we have a
parametric analysis transform ga(x; θ) that maps x to a latent
vector z. Then, a quantizer Q discretizes z to ẑ for lossless
entropy coding. Since we rely on HD (Fig. 2) as a distortion
function, the parametric synthesis transforms gs(x̂;φ) that maps
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ŷ to an approximation of a representation h̃. As introduced
in [42], we apply uniform quantization Q, but replace Q with
continuous relaxation by adding uniform noise η ∼ U(− 1

2 ,
1
2 )

during training for gradient computation.
Without a hyperprior, the loss is:

Ex∼px
DKL

[
q‖pỹ|x

]
= Ex∼px

Eỹ∼q − log p (x|ỹ)− log p (ỹ)] (17)

With side information, we condition on a hyperprior, such
that each element ŷi is now modeled as a Gaussian with its own
mean and standard deviation:

pỹ|z̃ (ỹ | z̃, φh) =
∏
i

(
N

(
μ, σ̃2

i

)
∗ U

(
−1

2
,
1

2

))
(ỹi) (18)

where z = ha(ŷ; θh) and μ̂, σ̂ = hs(z̃;φh). The final loss func-
tion results in the following:

Ex∼px
DKL

[
q‖pỹ,z̃|x

]
= Ex∼px

Eỹ,z̃∼q [log q(ỹ, z̃ | x)
− log px|ỹ(x | ỹ)− log pỹ|z̃(ỹ | z̃)
− log pz̃(z̃)] (19)

For the distortion term, we use the sum of squared errors
between the shallow layer (teacher) representation and the com-
pressor (student) approximation, i.e., sse(h, h̃).

2) Mapping Encoder Output to Target Representations: Af-
ter training the first enc, dec1 pair, FOOL freezes enc weights,
i.e., only applying the distortion term of the loss in (19), for
subsequent decoders dec2, dec3 . . . decn (Section V-E). Lastly,
FOOL treats the reconstruction model rec as a decoder and
assigns the identity function as its teacher, i.e., Hrec(x) = x.
Unlike for other decoders, the target representation must be
human-interpretable. Hence, we train the decoder for image
reconstruction using the Charbonnier Loss [56]

Lrec =
√
‖x− rec (enc (x)) ‖2 + ε2 (20)

where ε is a small constant we set as 2 · 10−3. It is out of
this work’s scope to exhaustively evaluate image restoration
methods. Rather, the focus is to provide empirical evidence for
the claims in Section III-C1. We simply found that despite per-
forming comparable to other sums of error losses on benchmark
metrics, using Charbonnier results in more stable training.

VI. EVALUATION

A. Experiment Design and Methodology

Our experiments reflect our aim to determine (i) the compres-
sion performance on aerial and satellite imagery without relying
on prior knowledge and (ii) the feasibility of orbital inference.

1) Testbed: We benchmark [57] on an analytic and trace-
driven [58] simulation based on results from a physical testbed
with hardware summarized in Table I. The power consump-
tion is capped at 15 W for the entire testbed. Our simulation
replicates a configurable CubeSat by imposing energy, memory,
and bandwidth constraints. To simulate the downlink bottleneck
with varying link conditions, parameterize link conditions and
data volume (Section III-A) using real-world missions [6], [29],

TABLE I
TESTBED DEVICE SPECIFICATIONS

TABLE II
CONSTELLATION LINK CONDITIONS

Fig. 9. Detection pipeline for evaluation.

[59], [60] as summarized in Table II. Due to the orthogonality of
compression to systems-related challenges in OEC, we argue a
focused simulation yields more insight results than running a full
OEC simulator (e.g., [9]). Our intention is for FOOL to facilitate
OEC as an auxiliary method. Therefore, we demonstrate the
bitrate reduction and resource usage trade-off for various con-
figurations representing the heterogeneity of available compute
resources and nanosatellite constellations.

2) Third-Party Detection Models & Target Tasks: FOOL de-
rives the basic approach to accommodate multiple backbones
with a single encoder (Section V-E) from FrankenSplit [17].
Foundational models (i.e., feature extractors or backbones) are
interchangeable third-party components in SVBI. To comple-
ment previous work (Section II-A) and further show the flex-
ibility of SVBI, we focus on modern YOLO variants [61].
Fig. 9 illustrates the pipeline to represent third-party detectors
we prepare before evaluating codecs.

While the work in [17] did not explicitly evaluate object
detection tasks, the support for two-stage detectors follows from
the codec sufficiently approximating the representation of the
feature extractor (i.e., the first stage). However, it is not apparent
whether the general SVBI framework yields gains over image
codecs when the targets are one-stage detectors. Therefore, to
replicate a representative service for inference on aerial or satel-
lite imagery, we apply simple transfer learning on open-source
weights [61] for YOLOv5 and YOLOv8. Image codecs pass a
sample dec(enc(x)) = x̂ to the input layers of a target model.
Feature codecs (i.e., SVBI methods) skip the shallow layers and



FURUTANPEY et al.: FOOL: ADDRESSING THE DOWNLINK BOTTLENECK IN SATELLITE COMPUTING WITH NEURAL FEATURE COMPRESSION 6757

pass dec(enc(x)) = ĥ to the deeper layers. Detection models
with the same architecture share the frozen shallow layers (i.e.,
layers until the first non-residual connection). We associate
one task as outlined by the test labels for each of the three
dataset separately. The tasks represent varying mission condi-
tions. DOTA-2 [62] for a more coarse-grained aerial task with
comparatively lower Ground Sample Distance (GSD) and larger
objects. SpaceNet-3 [63] for urban tasks (e.g., for traffic control)
with high image resolutions. Lastly, xView [64] for disaster
response systems where detection models rely on fine-grained
details. Lastly, image reconstruction is treated distinctly as single
task for the reconstruction model, and not the detection pipeline,
by combining the images from the three test sets.

To simplify the already intricate evaluation setup and to
ease reproducibility, we deliberately refrain from more refined
transfer learning methods. We merely require detection models
with mAP scores that are moderately high to determine whether a
codec can preserve fine-grained details for EO tasks on satellite
imagery. For each architecture, we jointly finetune the deeper
layers and train separate predictors that achieve around 35-65%
mAP@50.

3) Training & Implementation Details: To demonstrate that
FOOL can handle detection tasks without relying on prior in-
formation (Section III-B), we do not optimize the compression
model with the training set of the prediction tasks (i.e., DOTA-2,
SpaceNet-3, xView). Instead, we curate other aerial and satellite
datasets [65], [66], [67], [68], [69], [70], [71], [72] that cover
region and sensor diversity. SVBI does not rely on labels, i.e.,
replacing the curation with any diverse enough dataset from
satellite imagery providers (e.g., Google Earth Engine) should
be possible.

We train one separate compression mode for each third-party
detector using the shallow layers as teachers and verify whether
the rate-distortion performance is comparable. Then, we freeze
the encoder of the compression model for YOLOv5-L and
discard all other encoders. Lastly, we freeze the remaining
encoder’s weights and (re-)train the separate decoders to demon-
strate clients may request inference on variations (YOLOv5-M)
or newer models as they emerge (YOLOv8).

We fix the tile resolution to 512× 512 during training. We
load samples as a video sequence for FOOL by grouping tiles
from the same image in partitioning order with random trans-
formations to fill any remaining spots. After training, the tensor
shape (i.e., the number of tiles and the spatial dimensions) may
vary for each separate sample. We use PyTorch [73], Compres-
sAI [74], and pre-trained detection models from Ultralytics [61].
To ensure reproducibility, we use torchdistill [75]. We use an
Adam optimizer [76] with a batch size of 8 and start with an
initial learning rate of1 · 10−3, then gradually lower it to1 · 10−6
with an exponential scheduler. We first seek a weight for the rate
term in (19) that results in lossless prediction with the lowest
(best) bpp. Then, we progressively increase the term weight to
evaluate trade-offs between rate and predictive loss.

4) Datasets Preparation: The train sets for third-party de-
tectors and the train sets for the compression models are strictly
separated. However, we create square tiles for all datasets by
partitioning the images with a configurable spatial dimension

TABLE III
SUMMARY OF CODEC PARAMETER DISTRIBUTION

and applying 0-padding where necessary. We extract bands from
samples corresponding to RGB and convert them to 8-bit images,
as to the best of our knowledge, there are no widespread open-
source foundational models for detection with multispectral
data yet. To ease direct comparisons, we convert the network
detection labels of SpaceNet-3 by transforming the polygonal
chains into bounding boxes. Lastly, since there are no publicly
available labels for the xView and SpaceNet test sets, we create
a 9:1 split on the train set.

5) Compression Performance Measures: To evaluate how
codecs impact downstream task performance, we measure Pre-
dictive Loss as the drop in mean Average Precision (mAP) by
inputting decoded samples. We regard a configuration to result in
lossless prediction if there is less than 1% difference in expected
mAP@50. We confirm the observations from [17] where the
initial teacher only negligibly affects compression performance,
and the predictive loss by a codec is comparable across target
models (i.e., the retained information in shallow layers is similar
across YOLO variations). Hence, for brevity, we aggregate the
compression performance for each task separately, taking the
highest predictive loss incurred on a detection model. We train
the image reconstruction model using the same configurations
as [55], and compare it with LIC models using common mea-
sures (PSNR, MS-SSIM, LPIPS [18]).

6) Baselines: We consider seminal work for image codecs as
baselines with available open-source weights. Factorized Prior
(FP) [42] as a relatively small model without side information.
(Mean-)scale hyperprior (SHP, MSHP) [34], [35] for drawing
comparisons to side information in LIC, and Joint autoregres-
sive and hierarchical priors (JAHP) [35] that further improves
compression performance with an autoregressive context model.
Lastly, TinyLIC [36] represents recent work on efficient LIC
design with state-of-the-art rate-distortion performance. Table
III summarizes parameter distributions between encoder and
decoder components from LIC models.

To draw comparisons to existing work on SVBI, we combine
FrankenSplit [17] and the Entropic Student [16] as a single
baseline (BSVBI). We utilize FrankenSplit’s more efficient ar-
chitecture design since it outperforms the latter without relying
on finetuning the deeper layers. The encoder consists of stacked
residual blocks (Section V-A), and the decoder is instantiated
from a YOLOv5+ blueprint (C3 blocks [61]). We scale the
capacity of BSVBI by including side information from LIC
(MSHP) and increasing the width and depth to match the various
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Fig. 10. Compression performance image codecs.

Fig. 11. Compression performance feature codecs.

FOOL configurations. We train FOOL and BSVBI with the same
dataset and training parameters (Section VI-A3).

B. Rate Trade-Off With Predictive Loss

We report the predictive loss as a percentage point difference
using mAP@50 on foundational detection models.

1) Comparison to Image Codecs: Fig. 10 illustrates the
trade-off between bpp (left is better) and predictive loss (top
is better) for LIC models on each task separately. We primarily
focus on how FOOL compares to existing SVBI to draw new
insights from the novel additions and confirm that our results
on aerial and satellite imagery datasets with one-stage detectors
are consistent with previous findings on standardized terrestrial
datasets [15], [16], [17].

2) Comparison to Feature Codecs: Fig. 11 contrasts the
trade-off between bpp and predictive loss for FOOL and BSVBI
with progressively increasing sizes (i.e., capacity). The efficacy
of compressing shallow features is best shown by comparing
BSVBI and FOOL to MSHP, as they rely on the same entropy
model. The highest quality MSHP model results in about 3-4%
predictive loss for DOTA-2. In contrast, the highest quality
BSVBI-S model has 37x fewer encoder parameters but results in
half the bitrate with no predictive loss. Despite BSVBI demon-
strating strong compression performance, FOOL significantly
outperforms BSVBI across all configurations. FOOL-S has a
51% lower bitrate for configurations with lossless prediction
than the comparatively large BSVBI-L. Relative to the FOOL
model with matching capacity (FOOL-L), BSVBI-L has twice
the bitrate.

TABLE IV
ABLATIONS COMPARISONS FOR LOSSLESS PREDICTION

TABLE V
COMPARISON BETWEEN RECOVERY AND IMAGE CODECS

3) Ablation Study: We may consider BSVBI an ablation, as
FOOL extends BVSBI’s architecture by placing 3D attention
layers between the residual blocks and a cross-attention layer
to include context. The auxiliary networks ha and hs (Section
V-C) are identical for FOOL and SVBI, i.e., three stacked resid-
ual blocks. Additionally, we perform ablation studies to assess
by-component improvement and summarize the results for loss-
less predictions in Table IV.

The NITA models include the keypoint context without the
inter-tile attention (ITA) layers. Analogous to BSVBI, we re-
place attention layers with residual blocks and match corre-
sponding model sizes by increasing the depth and width of NITA
models. NKPC-Ablation drops components for embedding key-
points, i.e., it only includes the IT attention layers.

The results show that relative to BSVBI, the task-agnostic
context component contributes considerably more to rate reduc-
tions than the ITA layers that leverage inter-tile spatial depen-
dencies. Still, we argue that the NTI-layers fulfill their purpose,
to synergize with the partitioning strategy that maximizes pro-
cessing throughput (Section VI-D).

C. Image Reconstruction Quality

We aim to demonstrate the feasibility of recovering pre-
sentable images from the compressed latent space of shallow
features. We average results on DOTA-2, SpaceNet-3, and xView
to reduce the bloat of reporting similar values summarize the
results in Table V. For transparency, we exclusively select sam-
ples from the lower quartile across all measures to qualitatively
showcase the reconstruction.

HQ refers to the weights with the highest available quality,
and MQ refers to mid-quality weights that roughly match FOOL
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Fig. 12. Visual comparison between FOOL image recovery and a state-of-the-art LIC model.

Fig. 13. Showcasing potential of recovery from compressed features with finetuning for perceptual quality using LPIPS.

in PSNR. FOOL-FT finetunes the reconstruction model for an
additional 2.5 · 105 iterations using LPIPS [18]. Unsurprisingly,
the LIC models achieve significantly better scores across all
reconstruction measures (i.e., PSNR, MS-SSIM, and LPIPS).
The advantage of FOOL is that it has a considerably lower
bitrate with no predictive loss on tasks for which it had no
prior information. Nonetheless, the results are considerably
more interesting when contrasting FOOL to LIC models with
mid-quality weights. Notice how FOOL matches reconstruction
measures at no predictive loss and a 46-77% lower bitrate. Note
that we did not find that the dataset significantly influences
rate-distortion performance, except for a slight reduction in
predictive loss (verified by training an FP model on the curation
using the same setup as in [74]). Compression is a low-level
vision task that generalizes well but may lack domain specificity
when applying a standard rate-distortion reconstruction loss. In
other words, the objective is the decisive difference between
SVBI and LIC models. To provide some intuition to the LPIPS
measure, we select an image where FOOL-FT achieves con-
siderably lower PSNR than TinyLIC and contrast the results in
Fig. 12. Notice that the quality differences are most visible with
fine-grained details, i.e., compared to TinyLic-HQ, TinyLic-MQ
has a noticeable blur with some shadows completely missing in
the bottom left. FOOL-FT preserves such details, despite lower
PSNR, and this increase in perceptual quality is reflected in
the LPIPS score. Fig. 13 further visualizes the potential of reli-
ably recovering fine-grained from the compressed latent space.
Naturally, it should be possible to finetune the TinyLic-MQ to
improve perceptual quality analogous to FOOl-FT. However,

TinyLIC is still a significantly costlier model, with a worse rate
and prediction performance. More pressingly, we stress that the
reliability of a restoration model is bound by the available signals
in the compressed latent space. Accordingly, we deliberately
avoid generative models that prioritize realism over structural
integrity. Prioritizing realism over reliability defeats the primary
purpose of image restoration, i.e., intervention by human experts
in critical EO applications. A model outperforming experts
does not imply that predictions may inexplicably be false. In
particular, where human cost is involved (e.g., disaster warning
or relief [5]) it is paramount that experts can trust the codec to
not include extrapolated elements to an image.

We argue that our results adequately underpin the statements
in Section III-C1 and Section III-C2. In summary, if the salient
regions align, compressing for model prediction requires more
information than for human observation. Task specificity deter-
mines rate savings and not an entity’s input interface. Targeting
shallow features is minimally task-specific by relaxing the objec-
tive for lossless prediction on all possible tasks to those valuable
for clients.

D. System Performance

The following evaluates FOOL’s resource usage and how well
it can address the downlink bottleneck. The methodology resem-
bles how the system aids operators in determining the correct
model size for a target device and estimating the increase in data
volume relative to bent pipes. We do not apply vendor-specific
optimization (e.g., TensorRT) to ensure transparent evaluation
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Fig. 14. Processing throughput by model size.

TABLE VI
THROUGHPUT COMPARISON BETWEEN FEATURE CODECS

and keep the results reasonably platform agnostic. Instead,
we instantiate all models dynamically with half-precision in
the native PyTorch environment (torch 1.14.0 with CUDA
11.4.315). Image codecs are omitted for conciseness, as even
the state-of-the-art for efficient LIC design still runs consider-
ably slower than the largest SVBI models.

1) Processing Throughput and Transfer Cost Reduction: We
manually step through parts of the profiler (Section IV-B) for
evaluation and to show how it estimates gains in downlinkable
data volume. Consider the results from measuring the fric-
tion between model sizes and input dimensions on processing
throughput in Fig. 14. Notably, the processing throughput gain
of FOOL-S over FOOL-M is significantly higher than FOOL-
M over FOOL-L, despite FOOL-M having a comparable size
difference to both models.

Table VI summarizes the configuration that maximizes pro-
filer selection by TCR/s for all models on each device separately.

TABLE VII
CONCURRENT ENTROPY CODING AND EFFECT ON TCR/S

Since bitrate variance is low between DOTA-2, SpaceNet-3, and
xView, we average the bpp (Section VI-B) on the validation sets.
The bold Model value indicates the adequate size of each model
family on a device, i.e., the model we will deploy to measure
data volume downlinking in the following experiments. The bold
TCR/s marks the highest overall value for a device, i.e., we can
expect applying FOOL over BSVBI to result in considerably
more downlinkable data on all devices. However, due to keypoint
extraction and the ITA layers, FOOL’s processing throughput
is slower than that of BVSBI. The overhead is particularly
punishing for the most constrained device (i.e., the previous-
generation TX2), where BSVBI-M has slightly higher TCR/s
than FOOL-M despite the latter’s significantly better compres-
sion performance. Moreover, the profiler selects FOOL-S over
FOOL-M/-L for the low-end current generation Orin Nano and
high-end last-gen past generation NX. Conversely, the profiler
decides on the mid-sized model for BSVBI across all devices
despite FOOL’s compression performance scaling better.

Still, we argue that the results accentuate the findings from
Section VI-B2. Notice the contrast between TX2 and Nano
Orin. One hardware generation was sufficient for the lowest-end
device in the Jetson lineup to see a threefold increase in TCR/s
on FOOL-L over the last-generation midrange device. Thus, it
is reasonable to claim that FOOL can (i) adequately leverage the
current rapid progression of energy-efficient hardware improve-
ment (i.e., with FOOL-M, L, and potentially larger variants)
and (ii) is flexible enough to be deployed on more constrained
devices using the small FOOL-S that still achieve substantial
rate reduction.

2) Model Inference With Concurrent Task Execution: The
following examines the claim in Section IV-C, i.e., whether
FOOL’s compression pipeline can offset the runtime overhead of
entropy coding. In other words, we evaluate whether interference
between concurrent GPU and CPU-bound processes is negligi-
ble enough. We assume the worst case for interference, i.e., the
CPU-bound processes constantly run concurrently by keeping
them busy from an additional data stream when necessary. As
all three devices have multicore CPUs and a dedicated GPU, we
report results on the Nano Orin due to space constraints.

Table VII summarizes the results from running the entire
compression pipeline with concurrent task execution using the
configurations that maximize TCR/s from Table VI. The bold
values in the TCR/s dec. column indicates the size with the
highest decrease. A file includes all model artifacts output by
the neural codec’s DNN components for a single tile, i.e., the
pipeline still needs to entropy code them to match the bpp in
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Fig. 15. CPU (red) and GPU (blue) usage of encoder network.

Fig. 16. CPU (red) and GPU (blue) usage of concurrent pipeline.

TCR/s calculations. File size refers to the storage requirements
per tile of the encoder output tensors, i.e., the data volume the
rANS process encodes. We compute file size by a worst-case
upper bound by the encoder output tensor dimensionality (Sec-
tion V-D) without serialization formats that could exploit the
sparsity of ŷ and ẑ. There are two essential findings from the
results. First, the rANS process can consume tasks considerably
faster than the inference process can produce them, i.e., there is
no risk of backpressure within the pipeline. Second, there is only
a minimal percentage decrease in TCR/s across all devices and
models relative to sequential execution. Hence, we argue that the
pipeline successfully offsets the runtime overhead as claimed in
Section IV-C even without relying on a precomputed lookup
table (e.g., tANS in ZSTD [77]). The results are unsurprising
when viewing the CPU and GPU load of DNN inference without
CPU-bound concurrent tasks in Fig. 15. Since inference is GPU-
bound, CPU usage is low even when the GPU is under maximal
load. Contrast this with the CPU and GPU usage in Fig. 16 where
we monitor [57] usage while running the entire pipeline with
the two concurrent processes. If the CPU-bound processing task
were to interfere with the DNN execution, resource usage should
reveal frequent drops in GPU load. Comparing FOOL-L to S and
M reveals some dependency between DNN size and CPU usage.
For FOOL-L, two discernible drops in GPU usage suggest some
interference, which may explain the 2.9% decrease in TCR/s
for FOOL-L and BSVBI-L. In contrast, there is no noticeable
pattern difference in GPU load between Figs. 16 and 15 for S
and M variants, explaining the negligible 1-1.5% TCR/s drop.

3) Downlinkable Data Volume: We now compare how meth-
ods can alleviate the downlink bottleneck using the traces from
previous experiments. Fig. 17 visualizes the transferable volume
per downlink pass. Notice the logarithmic scale, i.e., FOOL
improves downlinking using bent pipes by over two orders of
magnitude without relying on prior information on the down-
stream tasks or crude filtering methods. For example, given

Fig. 17. Downlinkable data volumes by link.

Fig. 18. Energy cost of compression pipelines.

Maxar’s WorldView-3 conditions [29], it would be possible
to downlink roughly 9 TB of sensor data per pass before
reaching downlink saturation. As a comparison, the state-of-
the-art filtering method in [27] reports a 3× improvement based
on a definition of value. Note that to provide a realistic pre-
sentation of the opportunities SVBI provides, we assume that a
nanosatellite processes tiles until reaching a downlink segment.
Moreover, we disregard the “computational deadline”, i.e., it
can process all the data before reaching a ground segment.
This is reasonable since there should always be enough data to
process. If not produced by a single sensor, constellations may
designate certain satellites as compression nodes using reliable,
high-capacity local communication channels [78]. Further, it is
inferrable that even the low-end current-generation Orin Nano
without any vendor-specific optimization would barely miss the
computational deadline.

4) Energy Consumption and Savings: The following inves-
tigates the energy usage of the selected model for each device.
As the GPU and CPU usage patterns are highly similar, we
measure by the time it takes until a method can double the
downlinkable data. For example, if only downlinking 40 GB
is possible with the unprocessed data, then we measure energy
cost until the encoded size corresponds to 80 GB of raw captures.
Fig. 18 summarizes the results. As expected, processing on
TX2 requires more energy than on NX and Orin Nano as it
is slower. Somewhat interesting is that the NX consumes more
energy than the Orin Nano. As they execute the same models
with comparable processing throughput, the results suggest that
the newer Jetson lineup is more energy-efficient. Lastly, we
measure savings from reduced transmission time, arguably an
often undervalued advantage of compression. Admittedly, satel-
lites will downlink as bandwidth permits, i.e., the transmission
energy cost does not depend on the codec performance when
there is saturation. Nonetheless, to intuitively show the amount
of energy large volumes might require, we contrast with bent
pipes in Fig. 19. Given the link conditions, we measure the
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Fig. 19. Potential energy savings from transmission.

difference in energy cost between transmitting until saturation
and transmitting the corresponding raw volume from Fig. 17.

VII. DISCUSSIONS AND LIMITATIONS

A. Downlink Saturation Handling

This work has omitted to handle downlink saturation, i.e.,
prioritizing salient data when compression cannot sufficiently
reduce the volume in time. Existing work suggests to apply
intelligent adhoc filtering. However, as argued in Section II, such
filtering relies on strong assumptions that bias the downlinked
data towards a small subset of tasks clients may be interested
in. Therefore, we suggest that filtering should prioritize tiles
that provide sufficient information to recover filtered tiles with
a generative model. Intuitively, the lower the remaining uncer-
tainty, given other tiles, the more reliable generative models can
recover missing tiles.

B. Reliance on Foundational Models

Earth Observation (EO) requires considerations not included
in common object detection objectives and architectural com-
ponents, and widespread foundational models for satellite im-
agery have yet to emerge. Nonetheless, proprietary offerings
already exist [79], and we argue that the community drives to
open-source solutions will inevitably mitigate the limitation. We
worked around not having access to an EO-native foundational
model by only freezing the shallow layers to train the predictors,
i.e, each predictor is complemented with a backbone suitable for
a particular sensor configuration.

VIII. CONCLUSION

This work introduced a novel compression method that ad-
dresses the downlink bottleneck in LEO without relying on prior
knowledge of downstream tasks. A rigorous evaluation showed
that FOOL increases data volume with advancements that, to the
best of our knowledge, are unprecedented. The rate reductions
are primarily from the task-agnostic context. Additionally, the
ITA layers further improve compression performance with an
overhead that does not outweigh the processing throughput gains
from batch parallelization. Lastly, we transparently listed limita-
tions that future work should consider and identified promising
future research directions for OEC based on novel insights.
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