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Abstract—The rapid development of Low Earth Orbit (LEO)
satellite constellations offers significant potential for in-orbit ser-
vices, particularly in mitigating the impact of sudden natural
disasters. However, the massive data collected by these satellites
are often large and severely constrained by limited transmission
capabilities when sending data to the ground. Satellite computing,
which utilizes onboard computational capacity to process data
before transmission, presents a promising solution to alleviate the
downlink burden. Nonetheless, this paradigm introduces another
bottleneck: limited onboard computing capacity, resulting in slow
in-orbit processing and poor results. Current satellite computing
systems struggle to efficiently address both data transmission and
computing bottlenecks, particularly for urgent disaster services
that demand accurate and timely results. Thus, we introduce an
efficient satellite computing system designed to jointly mitigate
these bottlenecks, thereby providing better service. The core idea
is to utilize onboard computing capacity for swift in-orbit an-
notation of image regions, enabling adaptive compression and
download based on annotation confidence and perceived downlink
availability. Once the data is downloaded, image restoration and
re-inference are performed on the ground to enhance accuracy.
Compared to satellite-only inference, our system demonstrates an
average improvement in inference accuracy of 3.8%. Furthermore,
compared to ground-only inference, with only a 2.8% accuracy loss,
our system achieves a 38.4% reduction in response time and saves
71.6% of downlink volume on average.

Index Terms—Satellite computing, in-orbit service, inference,
adaptive compression.

I. INTRODUCTION

IN RECENT years, satellites have transitioned from large and
expensive to small and economical. Coupled with the devel-

opment of Commercial Off-The-Shelf (COTS) hardware, major
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cloud service providers (such as Google and AWS) and satellite
companies (such as OrbitsEdge) have proposed the concept of
”Space Infrastructure as a Service” [1]. This initiative aims to
equip large-scale small satellite constellations with intelligent
computing capabilities to efficiently process space data. At the
core of this initiative is the satellite computing paradigm, which
can extract vast amounts of information collected from space,
providing valuable analysis for applications such as global cli-
mate monitoring and disaster management, thereby enhancing
the quality and speed of satellite services. For instance, during
disasters like Australia’s Black Summer bushfires and flooding
in Bangladesh, intelligent processing and analysis of satellite
imagery have demonstrated the capability to accurately locate
disasters. This potential can mitigate impacts over extensive
areas, covering millions of square kilometers, and significantly
reduce economic losses, potentially saving billions of dollars.

Despite the tremendous potential and value of satellite intel-
ligent computing, obtaining accurate and timely analysis results
remains a major challenge. This issue significantly hinders the
provision of high-quality satellite services and restricts the prac-
tical deployment of satellite computing systems. The response
time from dispatching commands to satellites to obtaining de-
tailed image analysis on the ground typically exceeds 8 hours
(even a day) [5]. Additionally, performing processes directly in
orbit is frequently deemed impractical due to the insufficient ac-
curacy of the obtained onboard results. Both onboard inaccurate
results and extended response time are deemed unacceptable,
particularly in rapidly evolving disaster scenarios. Therefore,
there is a necessity to design an efficient satellite computing
system capable of enhancing accuracy within acceptable latency.

Enhancing the availability of satellite computing systems
primarily faces two inherent bottlenecks: limited onboard com-
puting capability and insufficient satellite-ground transmission
volume. To alleviate these bottlenecks, some works [6], [7],
[8] explored the deployment of lightweight models on satel-
lites by using COTS hardware for inference, aiming to reduce
in-orbit processing latency. However, for computing-intensive
computing tasks, the limited onboard computing capabilities of
satellites hinder their ability to manage all observation tasks
and ensure the accuracy of in-orbit processing. On the other
hand, some efforts [9], [10], [11], [12] investigated the satellite-
ground collaborative computing paradigm, by capitalizing on
the strengths of both in-orbit computing and ground-based
computing to decrease latency and enhance accuracy. Never-
theless, constrained by limited transmission capacity and brief
contact satellite-ground downlink, not all observations can be
transmitted to the ground. Achieving better inference accuracy
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Fig. 1. The accuracy-latency tradeoff between two deployment approaches
of satellite computing systems. Accuracy is determined by the average mAP
validated on NWPU (§4), while efficiency is measured by the time consumption.
SO (Prune, Sparsity, Quantization): Deploy a (pruning, sparse, quantized) model
for in-orbit inference on satellite. GO: Download raw data to the ground for
inference. MADUN [2], IIR [3], and TransCS [4]: Download compressed data,
then perform restoration and inference on the ground.

performance becomes challenging. Therefore, our work jointly
considers the above two bottlenecks, and our goal strives to
maximize the system accuracy while minimizing the latency,
as shown in Fig. 1.

To this end, this paper aims to design an efficient satel-
lite computing system. The core idea of our system revolves
around transmitting all images to the ground and leveraging
the abundant computing resources available on the ground to
enhance system accuracy. To minimize the downlink volume
and transmission time between satellite and ground, we initially
process all captured images using compression techniques. Sub-
sequently, based on the downloaded compressed images, we
perform image restoration on the ground to improve system
accuracy. However, the design of the satellite computing system
encounters two key challenges that have not been thoroughly ad-
dressed in existing literature. First, due to the saturated downlink,
efficient transmission requires sending more useful data that
enhances accuracy with reduced volume. However, traditional
existing strategies to reduce data volume cannot be directly ap-
plied to this issue. For instance, applying uniform compression to
all images significantly degrades system accuracy. Thus, how to
balance compression and transmission volume by determining
the optimal image compression ratio is key to optimizing the
capability of transmission. Second, to improve the accuracy
of the satellite computing system, downloaded images require
restoring more information with less time overhead. However,
restoring the resolution of all compressed images introduces sub-
stantial time overhead. Specifically, highly compressed images,
having lost significant information, may not yield beneficial
results when inputted into powerful models. Thus, balancing the
time overhead with the number of restored images to determine
the optimal restoration strategy remains challenging.

To tackle the above challenges, we conducted preliminary
experiments and found some crucial observations that motivated
the design of this satellite computing system. First, onboard
computing resources are better suited for identifying the impor-
tance of regions within images rather than analyzing the entirety
of the images. We hence design an adaptive compression strategy
based on the annotated importance of each image region in orbit.
Considering the constraint of downlink volume, we prioritize

allocating lower compression ratios to more important regions
to preserve crucial information in images, thereby enhancing
the efficiency of downlink utilization. Second, restoring the
annotated important regions of compressed images, as opposed
to all regions, results in greater accuracy improvements with
less time overhead. Thus, we design a patch-padding restoration
method based on in-orbit annotations of image regions. By
exclusively restoring the image regions annotated in orbit, this
approach minimizes time overhead while efficiently improving
system accuracy.

In this paper, we propose an efficient satellite computing
system AdaEO. AdaEO not only enhances accuracy but also
contributes to reducing task response time. This system con-
ducts in-orbit annotation and identification of crucial image
regions, facilitating the coarse-grained localization of critical re-
gions and enabling rapid low-precision responses. Subsequently,
AdaEO employs adaptive compression for these regions based
on their measured importance, effectively reducing the overall
transmission data volume. Additionally, AdaEO leverages a
patch-padding method based on downloaded images, resulting
in an overall improvement in system accuracy. We implemented
and evaluated AdaEO on three widely used satellite image
processing task datasets. The results show that, compared to
the satellite-only (SO) inference method, AdaEO tremendously
reduces the response time 38.4% on average and improves the
model accuracy 3.8% on average. Moreover, compared to the
ground-only (GO) inference method, AdaEO achieves substan-
tial 71.6% on average downlink usage savings while maintaining
the model performance.

The key contributions of this paper are:
� Aiming to maximize accuracy within acceptable latency,

we propose an efficient satellite computing system called
AdaEO, with a joint consideration between computing and
transmission bottlenecks.

� We first conduct extensive preliminary measurements,
summarizing the key observations and derived that dif-
ferent regions of each image contribute variably to the
system’s accuracy. This insight motivated the design of
AdaEO.

� We further design a confidence-adaptive image compres-
sion method to optimize the transmission volume and time.
Additionally, we design a patch-padding image restoration
method to enhance the accuracy of AdaEO.

� We implement and evaluate the performance of AdaEO
and demonstrate that AdaEO has advantages in accuracy
and response time over baselines.

II. BACKGROUND AND MOTIVATION

A. Satellite Computing

Over the past decade, advancements in satellite technology
and COTS hardware have driven a rapid increase in the deploy-
ment of small LEO CubeSats. By equipping these satellites with
computational resources, they can progressively offer strong
service guarantees for various terrestrial scenarios, providing
in-orbit services to the public. Specifically, image processing,
as one of the fundamental computational tasks for satellites,
requires downloading raw observational data to ground-based
data centers for processing under the traditional bent-pipe
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architecture. However, due to inherent bottlenecks in satellite-
ground connection windows and downlink bandwidth, this tra-
ditional paradigm struggles to support low-latency applications
such as disaster monitoring and oil spill detection. Additionally,
although these satellites can collect images covering over 350
million square kilometers daily, much of this data is difficult to
download to the ground in a short time, making it challenging to
utilize effectively. Satellite computing proposes the use of COTS
hardware deployed in orbit to perform preliminary processing
on raw data before transmission to the ground, thereby allevi-
ating data downlink pressure. As satellite technology continues
to evolve and COTS hardware capabilities improve, this new
paradigm of satellite computing holds the potential to provide
more effective services for real-time and high-accuracy applica-
tions, particularly in disaster monitoring.

B. Limitations of Deploying Efficient Satellite Computing
Systems

As illustrated above, while satellite computing holds immense
potential to enhance in-orbit service efficiency, the surge in data
volume combined with the limited performance of COTS hard-
ware still constrains its practical utility. Therefore, deploying an
efficient satellite computing system is crucial. Specifically, there
are two unique challenges:

Onboard computational bottleneck: Due to the limitations of
current satellite design and COTS hardware, in-orbit computing
systems typically have restricted computational capabilities. The
large size and huge volume of data collected by satellites pose a
significant challenge for efficient processing by these systems.
Currently, in-orbit computing systems struggle to perform infer-
ence and analysis on all data promptly and accurately, making
it difficult to meet service demands. Specifically, insufficient
accuracy and long processing times render in-orbit computing
results significantly less useful.

Satellite-to-ground downlink transmission bottleneck: De-
spite current downlink bandwidths reaching 10 s of Mbps, the
brief connection windows, usually lasting only a few minutes,
limit the amount of data that can be transmitted to ground-based
data centers. This prevents the utilization of powerful ground-
based computing resources to enhance inference performance.
Even saturated downlink capacities cannot support the download
of all collected data (10 s to 100 s of TB/day), and the extent to
which inference performance can be improved depends signifi-
cantly on the total amount of downloadable data.

C. Existing Solutions and Motivation

The performance of current satellite computing is constrained
by the aforementioned unique challenges. To unlock the po-
tential value of the vast amount of data collected by these
satellites, we have focused on improving the intelligent analysis
and processing capabilities of in-orbit satellites. Specifically, we
aim to enhance the efficiency of deployed satellite computing
systems, thereby offering better services to the public. Based
on efforts from various perspectives, we group the related work
into three main categories:

Satellite computing with AI capability: With the improvement
of computational capabilities in satellite COTS hardware, efforts

have been made to integrate AI capabilities into satellites to
provide better services. Initiatives such as Tiansuan Constella-
tion [13], [14] and OEC [15] have proposed satellite computing
to support in-orbit processing of collected data. To enhance
data analysis and processing efficiency, several works [13],
[15], [16], [17] have attempted to deploy inference models on
satellites. While these efforts leverage limited in-orbit computa-
tional capabilities for intelligent computing, the results often
remain impractical. For instance, some work [18] has ana-
lyzed the energy consumption and latency of various in-orbit
inference tasks. Despite increasing the utilization of in-orbit
computational resources, the inference accuracy remains insuf-
ficient. Other studies have sought to optimize computational
system performance through satellite-ground collaborative of-
floading [18] and multi-satellite collaborative model early-exit
mechanisms [19]. However, limited data transmission capacity
constrains the improvement of inference performance. Addition-
ally, some efforts [12], [20] have attempted to reduce data trans-
mission volume by filtering images based on target coordinates.
Yet, accurately locating the target position is not always feasible.
Even when ground coordinates are identified, converting them
to usable in-orbit coordinates involves complex transformations.
Therefore, deploying an efficient satellite intelligent computing
system presents significant challenges in practical applications.

Efficient inference systems for resource-constrained devices:
With the rapid development of mobile/edge devices, the deploy-
ment of inference systems on these devices is evolving towards
greater resource efficiency [21]. Performance optimization on
devices has garnered extensive attention from both academia and
industry [22], [23], [24]. Various research efforts have focused
on reducing the overhead of DL systems on mobile devices,
employing techniques such as offloading, model quantization,
model sparsity, and model pruning [25], [26], [27], [28], [29],
[30]. These approaches strive to balance inference latency and
model accuracy. Our work draws inspiration from these efforts
but emphasizes the rapid provision of in-orbit inference results
immediately after a disaster. Additionally, we aim to maximize
inference accuracy over time, ensuring both prompt and accurate
responses in critical situations.

Image compression and resolution restoration: Image com-
pression effectively transmits images in scenarios with lim-
ited storage space and bandwidth, while resolution restoration
compensates for lost image details, enhancing overall quality.
Some efforts have explored compressed sensing [31], [32] by
designing sparse sampling matrices and reconstruction methods,
significantly reducing required bandwidth compared to tradi-
tional methods. Other works focus on these processes separately.
For example, some research discards redundant information to
ensure higher compression efficiency [33], while others pre-
dict and estimate high-resolution details from low-resolution
images [34]. Additionally, generative techniques such as VAE,
GAN, and Stable Diffusion [35], [36] have been introduced
to generate images through models [35], [36]. Unlike existing
accuracy-prioritized compression methods such as PNG and
JPEG [37], [38], as well as traditional compressed sensing
algorithms. We strive to design an end-to-end satellite computing
system that provides adaptive compression and corresponding
restoration of downloaded images under constrained downlinks,
achieving efficient transmission and accurate compensation.
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Fig. 2. The overall workflow of AdaEO.

In this paper, we explore a solution to jointly address the
aforementioned two bottlenecks, aiming to equip satellites with
efficient intelligent processing capabilities. Despite the lim-
ited on-board computational power, it is adequate to support
in-orbit data analysis and preliminary processing. Specifically,
performing initial annotations on important regions of images is
more suitable than directly utilizing on-board inference results.
Additionally, adaptive compression based on the importance of
image regions lays the groundwork for more efficient utilization
of downlink volume, thereby contributing to the enhancement
of inference accuracy. Therefore, designing and deploying an
efficient satellite computing system that enables satellites to
perform practical intelligent processing is both critical and
meaningful.

III. AdaEO SYSTEM DESIGN

This work proposes an efficient satellite computing system
AdaEO, aimed to improve inference performance including
accuracy and response time. The core idea involves first identi-
fying critical regions based on the constrained computational
capabilities of satellites. Following this initial step, adaptive
image compression is implemented to alleviate the transmission
burden of data downlink. Finally, ground-based resources are
utilized to further enhance the inference accuracy of the system.

A. System Overview

Fig. 2 shows the detailed illustration of our AdaEO pipeline.
Overall, AdaEO adopts a satellite-ground collaborative frame-
work. Initially, AdaEO conducts the preliminary processing of
the collected data onboard. Subsequently, AdaEO utilizes the
satellite-ground downlink for transmitting the processed data to
the ground station, thereby enhancing the entire system perfor-
mance.

In AdaEO, in-orbit system includes three primary compo-
nents: the collector, annotator, and compressor. The collector
receives image capture task commands and orchestrates the
image collection process. The annotator carries out preliminary
annotations of image regions in orbit by utilizing deployed
lightweight models. The compressor adaptively compresses data
during download, considering the current link status. Note that,
our design primarily emphasizes the latter two components.
Specifically, we focus on annotating critical image regions in
orbit and adaptively compressing the downloaded data. This
compression is guided by both the link status and the annotations

Fig. 3. The diagram of swift in-orbit annotation.

made on the image regions. Our approach is designed to alleviate
the two issues of inefficient inference: the limited computa-
tional capacity of satellites that makes it challenging to perform
high-precision inference; and the constraints in the transmission
capacity of satellite-ground links that make it challenging to
download all data.

System in the ground station includes two crucial compo-
nents: the restorer and the compensator. The restorer is respon-
sible for the resolution recovery of the compressed images re-
ceived from satellites, and obtaining an image dataset of restored
images. The compensator utilizes this restored image dataset for
re-tuning, enhancing the system’s inference accuracy. Our main
focus lies in the design of the restorer component. Specifically,
we concentrate on how to efficiently restore the compressed
images once they have been downloaded, and further leverage
the powerful models on the ground to assist in-orbit inference
performance.

In the process of in-orbit region annotation, confidence thresh-
olds based on the IoG detected by the onboard model are
established, and these thresholds are utilized to evaluate in-orbit
computing. This confidence threshold indicates the probability
of accuracy for the annotated regions, which lies in the range
[0, 1] [39]. A higher threshold correlates with more reliable
detection results, suggesting a greater probability of accuracy in
the annotated regions.

B. Swift In-Orbit Annotation

How to efficiently process large captured images using ML
techniques is a crucial issue currently. A large amount of images
typically contain thousands of megapixels, which makes the
satellite-ground downlink unaffordable. Moreover, in-orbit in-
ference faces computational and energy constraints. To alleviate
the above constraints, we argue that AdaEO should prioritize
the swift annotation of onboard images, utilizing the constrained
resources available on the satellite. This process facilitates the
identification of vital regions within the images, and serves as a
basis to alleviate the burden on the satellite-ground downlink.

To fully capitalize on the maximum benefits of the entire
system, obtaining swift inference results directly in orbit is both
necessary and advantageous. For instance, in disaster scenarios,
rapid escalation in the number of casualties and the expansion
of affected regions before effective containment [40], swift
and coarse-grained annotation of disaster zones can be more
beneficial than continually seeking to enhance the precision of
disaster location inference.

Fig. 3 depicts the diagram of our swift in-orbit annotation
method, with the goal of rapidly detecting and delineating the
rough disaster-affected regions. The design is outlined as fol-
lows: i) We deploy a lightweight neural network (pruned DETR)
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on the satellite, which performs object detection directly on the
images captured by the satellite without training process; ii) We
identify bounding boxes corresponding to targets within each
image, along with their associated confidence thresholds.

We cannot employ existing classical methods such as tradi-
tional IoU metric [41] directly as our criteria, as IoU -based
selection of bounding boxes inevitably result in the omission
of part of important regions. IoU metric actually calculates the
intersection over the union between candidate bounding boxes
and the ground truth. Although a higher IoU value suggests a
smaller superfluous area relative to the ground truth, it does
not guarantee comprehensive coverage of the ground truth’s
maximum extent. In the context of low-precision inference,
candidates chosen based on high IoU values may tend to min-
imize overlap with redundant areas, inadvertently increasing
the likelihood of omitting crucial regions. Such a scenario is
counterproductive to our objective of annotating disaster areas
in a coarse-grained manner.

Therefore, to ensure more inclusive coverage of the ground
truth, we define IoG as the standard for selecting candidate
bounding boxes in the following.

IoG =
AO

AG
(1)

where AO represents the area of intersection between the candi-
date bounding box and the ground truth, andAG denotes the area
of the ground truth. We choose the bounding box with the highest
IoG for rapid in-orbit annotation. Note that, the accuracy of
these annotated boxes is not of primary concern. Their purpose is
to differentiate image regions of varying importance and provide
a reference for disaster relief efforts.

C. Confidence-Adaptive Image Compression

Upon conducting swift annotations of image regions, in-orbit
inference results are inadequate as the final output of the system.
For instance, in the context of post-disaster relief operations,
low-precision inference results might lead to substantial re-
source wastage or even misguide rescue efforts. Hence, there
is an urgent need to enhance in-orbit inference accuracy. On
the other hand, directly downloading all images to the ground
for analysis to enhance inference accuracy is infeasible due to
current limitations in downlink bandwidth.

To address these issues our approach utilizes compression
techniques to prioritize and transmit vital image regions based
on perceived transmission capacity and improves the infer-
ence accuracy using ground-based models. Specifically, we
denote the set of image indexes as I = {1, . . . , i, . . . , I}, and
D = {D1, . . . , Di, . . . , DI}, i ∈ I; where D represents all the
images that need to be downloaded, and Di represents each
specific image. Similarly, we denote the set of compression
ratio indexes as K = 1, . . . , k, . . . ,K, and we define C =
{C1, . . . , Ck, . . . , CK}, k ∈ K, where C represents the com-
pression factors, and Ck represents the compression value ap-
plied to a specific image.

These images will be input into the model for tuning, to
improve system performance by minimizing the loss function
F (D), and fi represents the loss of information for each image

after compression. The formulate problem is denoted by:

minF (D) =
I∑

i=1

fi(Di) (2)

Considering the compression ratio of each image C[D] deeply
affects the system performance, we further refine the problem
as follows:

P1 : min F (C[D])=f1(C[D1]), . . . , fi(C[Di]), . . . , fI(C[DI ]),
(3a)

s.t. ξ(C[D1] + · · · C[Di] + · · ·+ C[DI ]) ≤ tB,∀i ∈ I.
(3b)

where t is the duration of connectivity between the satellite
and the ground station, B denotes the downlink bandwidth, and
ξ represents the total storage size occupied by all processed
images.

However, addressing P1 presents significant challenges for
two primary reasons. First, designing a compression method
that minimally impacts accuracy is challenging. This is because
compressing the original image C[D] reduces data transmission.
However, it inevitably leads to increased information loss at
higher compression ratios Ck, thereby degrading system per-
formance. Second, establishing an exact analytical relationship
between the loss function f and each compressed image C[Di]
is generally unattainable. The reason is that when the same
compression ratio is applied, each image has varying effects
on the system’s accuracy.

To tackle P1, we investigate the interaction between different
ratios of image compression and their impact on the system.
Indeed, the importance of each image in improving system
accuracy is not uniform [12]. This insight led us to a deeper
analysis of different regions within each image. Based on the
previous annotation of different regions within each image with
different confidence thresholds, we further investigate whether
these distinct regions contribute to varying enhancements in sys-
tem accuracy. Therefore, we conducted preliminary experiments
by applying varying compression ratios to these regions and
found an interesting observation for algorithm design.
• Observation 1: The importance of annotated regions in

images for system accuracy gain is higher compared to other
regions: Fig. 4 shows the accuracy and compressed image size
when employing varying compression ratios within a designated
image region. Specifically, when opting for a lower compression
ratio (2× compression) in the annotated image region and a
higher compression ratio (8× compression) in the unannotated
image region, we observe an improved accuracy performance
by 7.3%, while saving 39.5% image size. It is concluded that
different regions within the image contribute to varying gains in
system accuracy. This enables us to adopt a lower compression
ratio in regions of higher importance, preserving more of the
original information, while employing a higher compression ra-
tio in other areas to economize on the required data transmission
size.

Based on the above observation, we defined a set of region
indexes in each image Di as J = {1, . . . , j, . . . , J}, and then
we divided the images into regions and defined C = {C1, . . . ,
Ck, . . . , CK}, k ∈ K; where Rij represents the j-th region of
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Fig. 4. The system’s performance with different compression ratios on various
annotated regions using DETR model. LH: Allocate compression ratio of 2 to
regions with high confidence, and allocate 8 to regions with low confidence. MH:
Allocate 4 to high, and 8 to low. HH: Allocate 8 to all regions. HM: Allocate 4
to high, and 2 to low. HL: Allocate 8 to high, and 2 to low.

the i-th image. Then, the set of original images D can be rede-
fined as R = {R11, · · · ,R1j , · · · ,Ri1, · · · , Rij}, i ∈ I, j ∈ J .
Moreover, based on the confidence values from swift annotated
regions, we sort the elements within eachR in descending order,
denoted as RS= {RS11, · · · ,RS1j , · · · ,RSi1, · · · , RSij}, i ∈
I, j ∈ J . We also sorted the elements within C in descend-
ing order, defined as CS= {CS1,CS2, · · · ,CSk}. Moreover, we
defined T = CSRSx, where Tij represents that we use CSk ∈
CS to compress the j-th region of the i-th image, i.e., Tij =
CS1RSijxi1 + CS2RSijxi2 + · · ·+ CSkRSijxij . Then, we en-
deavored to refine P1 into P2:

P2 : min
xij

{F (Tij)}, (4a)

s.t. ξ

⎛
⎝

I∑
i=1

J∑
j=1

Tij

⎞
⎠ ≤ tB, ∀i ∈ I, ∀j ∈ J , (4b)

xij = {0, 1}, ∀i ∈ I, ∀j ∈ J , (4c)

J∑
j=1

xij = 1, ∀i ∈ I, ∀j ∈ J . (4d)

In P2, to minimize the decline in system accuracy by ad-
justing distinct compression ratios for individual regions of the
image: Constraint (4b) represents the total bandwidth limitation;
Constraint (4c) mandates that each region will be compressed
by a specific compression ratio, Constraint (4d) mandates that
each region can only have one matching compression ratio.
The key consideration is how to ensure that the transmitted
compressed data ξ(

∑n
i=1

∑m
j=1 Tij) does not exceed the data

capacity available for transmission. Note that, the T = CSRSx
is controlled by the binary vector xij , while CS is a set and each
element is taken from a continuous interval. Therefore, P2 is
a classical NP-hard problem [42]. Specifically, considering the
satellite hardware’s efficient support for compression, in most
cases, it is more friendly to set the compression ratio as powers
of 2. Thus, we re-define the previousK = {2K , . . . , 2k, . . . , 21}
and CS= {CS1,CS2, . . . ,CSk}, k ∈ K.

Furthermore, there are some interesting observations from the
previous measurements when exploring the impact of varying
compression ratios on system accuracy: 1) When the com-
pression ratio of images exceeds 16, the preservation of vital

Algorithm 1: Confidence-Adaptive Image Compression Al-
gorithm.

information deteriorates, leading to a notable decline in sys-
tem accuracy. 2) As confidence progressively decreases, there
are certain thresholds where system accuracy decreases sig-
nificantly. To enhance the system’s accuracy by ensuring that
adaptive image compression retains important information, we
employ a strategy where we partition the confidence into inter-
vals based on thresholds that have a significant impact on system
accuracy. Within these intervals, we then assign appropriate
compression ratios. Moreover, we define K = {24, 23, 22, 21},
and CS= {CS1,CS2, . . . ,CSk}, k ∈ K, then we create a list LT

based on VT to record different threshold values for dividing
RS.

Algorithm 1 shows an adaptive approach to adjust the com-
pression ratio of image regions with varying confidence, aiming
to enhance the data transmission efficiency between satellites
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and ground stations. Initially, compression ratios are allocated
for each confidence interval using a default setting, and the
remaining transmission capacity constraint is calculated (line
5). We first apply a high compression ratio to regions below
the minimum threshold and the background. When surplus
transmission capacity is available, we activate the first two
confidence intervals. Specifically, we prioritize allocating the
lowest compression ratio to the first interval and initially al-
locate the highest compression ratio to the second interval. If
the transmission capacity is insufficient, we sort the images in
the first interval in descending order of confidence and sequen-
tially assign double the current compression ratio until there
is enough capacity to download all images (lines 17–19). If
there is additional transmission capacity remaining, we sort the
images in the second interval based on the product of confidence
and image regions and sequentially allocate half of the current
compression ratio until the available transmission capacity is
fully utilized (lines 20–22). Despite the high complexity of this
method, it executes quickly due to the limited compression ratios
supported by the satellite’s hardware and the significant impact
of specific confidence thresholds on system accuracy. Finally, all
images annotated by swift in-orbit inference can be adaptively
compressed and downloaded to ground stations.

D. Patch-Padding Image Restoration

After adaptive compressing and processing the image regions
in orbit, we download these images to enhance system accuracy
through analysis by powerful models on the ground. Due to the
different compression ratios on these downloaded images, we
need to perform a restoration process before analyzing them.
An intuitive approach would be to restore these images to their
original resolutions, utilizing restored images to compensate for
the system’s accuracy. However, this method may not be entirely
feasible due to the associated high time costs.

To tackle this issue, we further explore the time expenditure
at each step in the entire subsequent process. This analysis
identified the resolution restoration of all compressed images as
the critical bottleneck in the entire process. In our measurements,
we observed that images subjected to high compression ratios
accounted for 72.3% of the total restoration time. Additionally,
within these highly compressed images, 63.6% of the regions are
predominantly less significant, repetitive background regions.
This observation led to a pivotal insight: selectively restoring
only essential regions in the images, which have been subjected
to lower ratios of compression. These restored segments could
then be integrated into the highly compressed background re-
gions, thereby synthesizing a new composite image, as shown
in Fig. 5. Hence, we performed some preliminary experiments
and found crucial observations from the results.
• Observation 2: Patch-padding restoration appears to be

more efficient for resolution-compensated scenarios: Fig. 6
depicts the system accuracy and time consumption in various
image recovery scenarios, particularly when dealing with heav-
ily compressed images. Initially, images undergo heavy com-
pression (8×). We then evaluate the efficacy of fully restoring
the compressed images against restoring only predetermined
annotated regions during the recovery process. Our findings
reveal a significant reduction in recovery time by 69.7% when

Fig. 5. The diagram of patch-padding restoration.

Fig. 6. The cost of various restoration strategies using DETR model. HH-
>NN: The compression ratio on all regions is 8, and all regions are restored.
HH->HN: Restore the regions with low confidence. HH->NH: Restore the
regions with high confidence.

restoring only the annotated regions, alongside a 5.0% increase
in system accuracy. This improvement stems from the fact that
the annotated regions in the images are crucial to the system’s
accuracy gains. Focusing restoration efforts on these specific
regions not only minimizes recovery overhead, but also strategi-
cally concentrates coarse-grained ”attention” on these regions,
thereby amplifying their influence on system accuracy.

Hence, to enhance system performance with minimal over-
head from the downloaded (compressed) images, we introduce
a patch-padding resolution approach. This method entails a
three-step design: initially restoring each annotated region in the
compressed images; subsequently replacing these annotated re-
gions in the compressed images with their restored counterparts;
and finally, re-entering the patch-padding images into the system
for tuning and re-inference. This re-inference process is designed
to offset the diminished accuracy experienced during the rapid
response phase. Note that, the essence of the patch-padding
strategy lies in its ability to balance time efficiency against
accuracy enhancement.

IV. EVALUATION

We experimentally evaluated our approach in terms of end-
to-end performance, response time, and compression.

A. Experiment Settings

To evaluate the performance of AdaEO on each dataset,
we perform our experiments on a Ubuntu 18.04 Linux server
with 8 NVIDIA A40 GPUs. Moreover, to simulate the limited
computing capacity of the satellite and gain insights into runtime
performance (response time), we utilize a real-world device:
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TABLE I
DATASETS FOR EXPERIMENTS

NVIDIA Jetson ORIN NX, which is a high-end edge comput-
ing platform suitable for deployment in vehicles and satellites,
equipped with 16GB of RAM, 64GB of storage, and a 1024-core
NVIDIA Ampere architecture GPU with 32 Tensor Cores.

Datasets and models: We evaluate three classic geospatial
datasets from diverse scenes, including vehicles, planes, over-
passes, and oil tanks, as shown in Table I. Moreover, we employ
a classical object detection model, called DEtection TRans-
former [46] in our experiments, which consists of a set-based
global loss and a Transformer encoder-decoder architecture.

Metrics: To quantify the performance of our system, we report
the following metrics.
� Accuracy: The metric refers to mAP accuracy, a classic

metric in object detection that considers both precision and
recall across multiple categories.

� Downlink volume: The metric refers to the total amount
of data transmitted from satellite to ground throughout the
transmission process. It encompasses the cumulative size
of all the images downloaded to the ground.

� Final response time: The metric signifies the time required
to achieve convergence accuracy using a specific method.
While the first response time denotes the time required to
attain initial accuracy in orbit after tuning the deployed
model on the satellite.

Baselines: We utilize three baselines in experiments to
demonstrate AdaEO’s performance:
� SO: All raw observational images are subjected to in-

ference through the onboard models, and the resulting
inferences are subsequently transmitted to the ground.

� GO: Satellites operate as bent-pipe systems [15], collecting
raw observational images and transmitting them to the
ground, then performing inference by the models deployed
on the ground.

� MADUN [2]: The satellite-ground cooperation framework
utilizes a state-of-the-art compressed sensing algorithm
named MADUN, aligning with the processing workflow
of AdaEO. The difference is that this framework executes
uniform image compression in orbit, and then performs
image restoration and re-inference on the ground.

B. End-to-End Performance

We show the overall performance of AdaEO compared to
baselines. Fig. 7 shows the convergence accuracy performance
of AdaEO compared to three baselines.
AdaEO compensates for the system accuracy after in-orbit

compression and achieves accuracy close to GO results sub-
sequently. Moreover, AdaEO demonstrates the capability to
achieve 71.2% system accuracy (on average) within a relatively

Fig. 7. The accuracy of AdaEO compared with three baselines. The gray area
in the ”OURS” represents the performance improvement thatAdaEO can deliver
compared to the performance at the first response time.

Fig. 8. The downlink volume of AdaEO compared with three baselines. SO
does not need to use the download link.

short first response time. After subsequent accuracy compensa-
tion, it further offers 77.1% accuracy (on average). Compared
to the final accuracy provided by SO, AdaEO achieves 95.7%
performance in the first response, and the final compensation ac-
curacy surpasses 3.8%. Compared to the final accuracy provided
by GO,AdaEO achieves 89.6% performance in the first response
and 97% accuracy in the final compensation. Compared to the
final accuracy provided by MADUN, AdaEO achieves 91.9%
performance in the first response and 99.2% accuracy in the final
compensation. AdaEO’s accuracy approaches that of MADUN
and GO because AdaEO aims to preserve critical information
in annotated regions during compression. The patch-padding
restoration method further applies “attention” to annotated re-
gions at the image granularity during subsequent compensation
and re-inference.

Fig. 8 shows the performance comparison of downlink vol-
ume. The results show that AdaEO significantly reduces down-
link volume compared to the baseline methods. Compared to
GO, AdaEO significantly reduces downlink volume required
by 71.6%. SO requires no downlink volume because its entire
pipeline is executed in orbit. Compared to MADUN, AdaEO
also reduces downlink volume by 62.8%. This is becauseAdaEO
selectively and adaptively compresses downloaded images, i.e.,
applying low compression ratios to information in annotated
regions with high confidence, while using high compression
ratios on a large portion of unannotated regions (annotated
regions with low confidence) with lower importance. Moreover,
the unannotated regions with high compression ratios also con-
tribute to the improvement of inference accuracy.

We further explore the response time required by the above
methods, as shown in Fig. 9. The results show that across all
datasets, AdaEO’s first response time is as low as 0.5 seconds,
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Fig. 9. The response time of AdaEO compared to baselines.

Fig. 10. The accuracy-time tradeoff of AdaEO compared to three baselines.

constituting less than 1‰ of the total pipeline response time.
Compared to the response time required by the three baselines,
the overall response time of AdaEO is only 61.5%, 77.7%, and
50.9%, respectively. Compared to MADUN, AdaEO only needs
to recover annotated regions and find the corresponding regions
in the full compressed images for replacement. Furthermore, SO
and GO both require iterative training on all original images. GO
needs to download all the original data to the ground before
training, while AdaEO only needs to fine-tune the restored
images. We conclude that, as satellite image resolution and
quantity increase, the overhead associated with baselines will
far exceed those of AdaEO.

C. Analysis of Response Time Constraints

We further investigate the performance of AdaEO compared
to baselines under different time constraints. We maintain the
hyper-parameter settings the same as the settings of the above
end-to-end experiments. Fig. 10 illustrates the trade-off between
response time and accuracy. We set the response times to 1,
2, 3, and 4 hours, and evaluate on the RSOD dataset in this
experiment.

As observed,AdaEO consistently shows remarkable accuracy
across different response times and nearly achieves the same
accuracy as GO under extended response times. Specifically,
when the response time is limited to less than one hour, AdaEO
provides accuracy almost equivalent to SO (with only a 0.4%
gap) and outperforms GO by 24.3%. Moreover, with the re-
sponse time restricted to two and three hours, AdaEO surpasses
both SO and GO by 3.3%−7.9% and 3.6%−6.7%, respectively.
When the response time is limited to 4 hours, AdaEO enhances
accuracy by 3.3% compared to SO, and achieves 98.6% of GO’s
performance. The underlying reason is that AdaEO swiftly and
accurately annotates key regions of images, which is crucial for
reducing response time and enhancing accuracy. Although SO
can obtain results rapidly, it struggles to improve system accu-
racy. Conversely, GO can enhance system accuracy but requires

downloading and processing all raw data, resulting in slower
performance improvements. Notably, the current experiment is
conducted on the RSOD dataset with a size of 0.3G, whereas
real satellite computing scenarios involve larger quantities and
sizes of images. In such cases, AdaEO can achieve higher accu-
racy in relatively shorter response times, demonstrating superior
operational efficiency.

D. Analysis of Compression Condition Constraints

We investigate the performance of AdaEO across varying
compression conditions. Specifically, we consider the following
settings: i) Allocating different confidence threshold intervals;
ii) Allocating different compression ratios; iii) Allocating dif-
ferent compression ratios on different confidence threshold in-
tervals. We also keep the remaining hyper-parameters consistent
with the experimental configuration.

Impact of threshold intervals: Fig. 11(a) reports the impact of
threshold intervals on accuracy and downlink volume ofAdaEO.
We keep the compression ratios at 2, 4, and 8, and allocated three
different confidence threshold intervals for these compression
ratios as follows: i) LI: (1, 0.7), (0.7, 0.4), (0.4, 0.3); ii) MI: (1,
0.6), (0.6, 0.4), (0.4, 0.3); iii) HI: (1, 0.8), (0.8, 0.5), (0.5, 0.3).
We explore the performance of AdaEOwhen applying the same
compression ratio to regions of varying importance.

As observed, when lower compression ratios are allocated
to regions of reduced importance, downlink volume increased
by 28.8%−29.6%, while the accuracy performance of AdaEO
decreased by 3.4%−4.7%. The underlying reason is that allo-
cating lower compression ratios to these regions preserves some
redundant information, increasing the pressure on downlink
transmission, while it’s difficult to gain accuracy improvement.
Notably, the third setting resulted in a 29.5% decrease in sys-
tem accuracy compared to OURS. The difference lies in the
allocation of confidence threshold intervals for 4× compression
ratio, indicating that even in annotated regions of low confidence,
retaining some information to maintain system performance is
necessary.

Impact of compression ratios: Fig. 11(b) illustrates the per-
formance of AdaEOwhen different compression ratios are allo-
cated to confidence threshold intervals. We keep the confidence
threshold intervals at (1, 0.8), (0.8, 0.4), (0.4, 0.3), and allocated
varying compression ratios in each interval as follows: i) LR: 2,
4, 16; ii) MR: 2, 8, 16; iii) HR: 4, 8, 16.

The results in Fig. 11(b) demonstrate that allocating higher
compression ratios to regions of equal importance leads to
a significant reduction in downlink volume, ranging from
3.7%−7.4%. However, this approach comes at a cost, as the
accuracy performance of AdaEO decreases by 8%−19.8%.
This decrease in accuracy occurs because regions of higher
importance lose more information that is crucial for main-
taining system accuracy as the compression ratio increases.
Notably, in comparison to the second setting, the third setting
results in only a 2.6% reduction in system accuracy. This is
because, when the same compression ratio is uniformly applied
to all regions, those of higher importance can more efficiently
convey image information, thereby contributing to increased
system accuracy while maintaining the same downlink volume
conditions.
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Fig. 11. Effects of different AdaEO settings on system performance.

Fig. 12. Ablation study on key designs. CW: All images are not compressed.
CA: The compression ratio on all images is 8. RW: All compressed images are
not restored. RA: All compressed images are restored.

Impact of threshold intervals partitioning: Fig. 11(c) illus-
trates the performance of our AdaEO when different compres-
sion ratios are allocated to distinct confidence threshold inter-
vals. We allocate different compression ratios to each interval
sequentially as follows: i) LA: A compression ratio of 2 is
allocated to (1, 0.8), and 4 is allocated to (0.8, 0.3). ii) HA:
A compression ratio of 2 is allocated to (1, 0.8), 4 to (0.8, 0.6),
8 to (0.6, 0.4), and 16 to (0.4, 0.3).

The results in Fig. 11(c) reveal that allocating different com-
pression ratios on more finely defined confidence threshold
intervals leads to the savings of downlink volume by 37% and
7.4%. However, the accuracy performance of AdaEO decreases
by 2.5% and 45.2%, respectively. This phenomenon is attributed
to the fact that when image regions are not of high importance,
setting a lower compression ratio can result in an excess of re-
dundant information. Consequently, increasing the compression
ratio helps filter out much of this redundant information, which
contributes minimally to system accuracy. Notably, compared
to OURS, the second setting achieved a 7.4% reduction in
downlink volume but led to a decrease of up to 45.2% in system
accuracy. The underlying reason is that when compression ratios
are already set to high values, further increasing them yields
smaller savings in image space, implying reduced potential for
conserving downlink volume. Simultaneously, as the amount
of discardable redundant information diminishes, the impact on
system accuracy becomes more pronounced.

E. Validation of Key Designs

Confidence-adaptive compression significantly reduces
downlink volume: In Fig. 12(a), performing confidence-adaptive
compression leads to a significant reduction in downlink volume
while ensuring system accuracy. Compared to uncompressed

TABLE II
A VISUALIZATION OF AdaEO: THE CHANGES IN AN IMAGE ACROSS

DIFFERENT STAGES

transmission, adaptive compression reduces downlink volume
by 81.3% with only a 1.4% loss in accuracy. In contrast to full
compression, adaptive compression increases downlink volume
by only 14.8% while improving accuracy by 6.6%. This is
primarily due to the fact that adaptive compression retains as
much of the information crucial for system gain as possible.

Patch-padding restoration effectively enhances systematic ac-
curacy: Fig. 12(b) illustrates that the patch-padding restoration
method can substantially enhance the system’s accuracy. Com-
pared to the method that omits image restoration after com-
pression, the overall pipeline’s time cost with the patch-padding
restoration method increases by only 5.4%, while significantly
improving accuracy by 12.2%. Furthermore, when contrasted
with full restoration, the patch-padding restoration method cuts
down the time required for the entire pipeline by 24.9%, while
incurring a minimal accuracy loss of just 0.4%. This is because
the patch-padding method focuses on directing coarse-grained
’attention’ to the critical regions of the image during the resolu-
tion restoration process.

F. A Visualization of AdaEO

AdaEO can enhance the efficiency of rescue operations: Table
II shows the changes of the image across different stages. The
process begins with the rapid identification and response to
critical regions while in orbit. Subsequently, AdaEO efficiently
reduces downlink load by applying adaptive compression, tai-
lored to the confidence levels of distinct regions. In the final
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stage, we utilize the patch-padding technique to restore the
resolution of the regions annotated as high confidence in the
compressed image, thereby enhancing the overall system accu-
racy. Therefore, AdaEO not only assists in the rapid initiation
of rescue operations, but also holds the potential to significantly
contribute to the continuous enhancement of these operations
through improved system accuracy.

V. CONCLUSION

In this paper, we introduce an effective satellite computing
system framework through satellite-ground collaboration. Its
primary emphasis is on providing post-disaster relief assis-
tance, addressing the specific challenges arising from compu-
tational and downlink constraints. To this end, we formulate
a transmission-constrained optimization problem to maximize
model inference accuracy while guaranteeing response time
requirements. We design an innovative pipeline that prioritizes
in-orbit swift annotation to distinguish confidence regions within
images and perform adaptive compression. Subsequently, the
pipeline executes patch-padding restoration and accuracy com-
pensation based on the downloaded compressed data. Experi-
ments demonstrate that compared to traditional GO inference,
AdaEO can achieve 89.6% accuracy in only less than 1‰ of
the response time. Furthermore, AdaEO consistently improves
inference accuracy up to 98.6% compared to GO inference
while conserving 71.6% of downlink volume and 38.4% of the
response time.
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