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Abstract: Recent advancements in satellite technolo-
gies and the declining cost of access to space have
led to the emergence of large satellite constellations
in Low Earth Orbit (LEO). However, these constel-
lations often rely on bent-pipe architecture, resulting
in high communication costs. Existing onboard infer-
ence architectures suffer from limitations in terms of
low accuracy and inflexibility in the deployment and
management of in-orbit applications. To address these
challenges, we propose a cloud-native-based satel-
lite design specifically tailored for Earth Observation
tasks, enabling diverse computing paradigms. In this
work, we present a case study of a satellite-ground col-
laborative inference system deployed in the Tiansuan
constellation, demonstrating a remarkable 50% accu-
racy improvement and a substantial 90% data reduc-
tion. Our work sheds light on in-orbit energy, where
in-orbit computing accounts for 17% of the total on-
board energy consumption. Our approach represents a
significant advancement of cloud-native satellite, aim-
ing to enhance the accuracy of in-orbit computing
while simultaneously reducing communication cost.
Keywords: cloud-native satellite; orbital edge com-
puting; satellite inference; verification test
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I. INTRODUCTION

With the evolution of next-generation communication
networks and advanced technologies, the number of
end-user connections and application requirements are
increasing. It is estimated that two-thirds of the pop-
ulation in the world will have access to the Internet
and billions of devices will be connected to the In-
ternet by 2023 [1]. However, there are still more
than 80% of the land and 90% of the ocean on the
Earth without network coverage. Moreover, real-time
and high-resolution satellite imagery have vital use in
getting along with nature. The terrestrial network is
extremely vulnerable in the face of natural disasters,
such as earthquakes and floods.

In recent years, however, the increasing investments
in satellite-related technologies make the Low Earth
Orbit (LEO) satellite constellation a strong comple-
ment to terrestrial networks [2]. Numerous competi-
tors have disclosed efforts to deploy LEO constella-
tions, including SpaceX [3], Telesat [4], and Amazon
[5]. These LEO constellations are promising to blan-
ket the globe with low-latency broadband Internet due
to the declining costs of satellite manufacturing and
launching today. Satellites are typically categorized
into distinct types, each specifically designed to fulfill
various tasks such as communication, guidance, and
sensing. In this work, we focus on the Earth Observa-
tion satellites.
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Since bent-pipe satellites do not have in-orbit pro-
cessing capabilities, raw data is completely transmit-
ted to the ground station, incurring a communication
cost [6]. The architecture breaks down due to the
limitations on downlink availability. Compression is
useful because it reduces the resources required to
store and transmit data. However, computational re-
sources are consumed in compression and decompres-
sion. Orbital Edge Computing (OEC) is proposed
to reduce the downlink transmission by placing com-
puting resources at the LEO satellites constellation
[7]. A promising cloud-native satellite operates by
capturing an image and processing it locally instead
of transmitting it to the ground completely. Though
the satellite with computing capability has been de-
veloped [8, 9], satellite-ground collaborative intelli-
gence is still required as follows: it is difficult for
satellites to perform complex tasks independently, de-
spite their limited computing capability; the models
are one-size-fits-all for all scenarios because satellite
data are inconsistently in spatial and temporal distri-
bution. Based on these reasons, satellite-ground col-
laborative intelligence still plays a vital role now.

The traditional LEO satellite constellations supple-
ment the terrestrial network and support 5G/6G com-
munication, etc [10]. The satellites are customized
for specific tasks, which will inevitably lead to the in-
compatibility of software and hardware. For this is-
sue, domestic and foreign satellite manufacturers such
as SmartSat [11] in the United States and TIANZHI
1 [12] in China propose software-defined satellites.
Software-defined satellites support plug-and-play pay-
loads, and the application software is loaded on de-
mand to flexibly adapt to multi-tasking and multi-
user scenarios [13]. However, it is still challenging
to meet the demand of real-time deployment and con-
tinuous update of in-orbit services. We first introduce
cloud-native technology to satellites to deal with these
challenges, because cloud-native technology with con-
tainer and microservice empowers satellites to build
and run the scalable application in a modern, dynamic
environment. These techniques enable loosely cou-
pled systems that are resilient, manageable, and ob-
servable. Motivated by advanced techniques, cloud-
native satellites address AI tasks through distributed
cloud-edge collaboration paradigms (e.g., collabora-
tive inference and federated learning, etc) to reduce
deployment cost, improve performance and protect

privacy.
Cloud-native satellite technologies show great

promise for in-orbit AI applications when the real-
world deployment brings forth a set of unique chal-
lenges, as shown in Figure 1. One such challenge is the
lack of flexibility in existing onboard inference archi-
tectures, which hinders the efficient deployment and
management of in-orbit applications. Additionally,
these architectures suffer from low accuracy levels that
fail to meet the demanding requirements of such ap-
plications. To address these challenges, we propose a
cloud-native-based collaborative intelligence architec-
ture designed to cater to various in-orbit AI applica-
tions, including CNN-based image classification, ob-
ject detection, and segmentation. By adopting this ar-
chitecture, we aim to enhance the adaptability and ac-
curacy of in-orbit AI applications, paving the way for
their successful implementation in a real-world con-
text.

We introduce a case study of satellite-ground collab-
orative inference system deployed in the experimen-
tal satellites of Tiansuan constellation, Baoyun and
Chuangxingleishen. Our system has yielded a remark-
able 50% improvement in in-orbit inference accuracy
and a substantial 90% reduction in the amount of data
returned by the satellite. However, in-orbit process-
ing must be compatible with the space environment,
which poses challenges due to the higher cost and
lower capabilities of space-based systems compared
to corresponding COTS units on the ground. Further-
more, we report our findings regarding the energy con-
sumption of in-orbit computing, which accounts for
approximately 17% of overall energy consumption.
These observations have important implications for fu-
ture satellite designs and energy management strate-
gies. Our work represents a significant step towards
realizing the potential of cloud-native satellites for im-
proving the efficiency and accuracy of in-orbit com-
puting.

The main contributions of this paper as follows:
1) We propose the concept of cloud-native satel-

lites to cater to in-orbit computing and facilitate
promising applications.

2) We present a case study of a satellite-ground col-
laborative inference system deployed in Tiansuan
constellation.

3) We report that the inference system not only en-
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Figure 1. The framework of in-orbit AI applications.
Cloud-native satellite can support diverse tasks.

hances the accuracy of in-orbit computing but
also effectively reduces communication costs.
Additionally, we provide insights into the energy
consumption associated with in-orbit computing.

The rest of this paper is organized as follows. Sec-
tion II introduces the background and motivation of
the paper. Section III describes the overall system
architecture and main components. Then Section IV
details how the satellite-cloud collaborative inference
works. Finally, Section V concludes the paper and dis-
cusses the potential directions.

II. BACKGROUND & MOTIVATION

Satellite data is exploding. It’s reported that about
45% of the LEO satellites in orbit are used for earth
observation. The data amount obtained by onboard
cameras is too large and 60% of remote sensing im-
ages are highly similar in the same scenario [14].
For example, ZY-3 is the Chinese first civilian high-
precision cartographic satellite, and it generates more
than 10 of TB data every day [15]. One single remote
sensing image dataset can reach tens of GB [16]. Such
large data transmission to the ground station may take
up most of the time and induce huge communication
overhead under the bent-pipe architecture [17]. It is a
fact that not all raw observations are worth exploring
further. Especially in the southwest of China, 80%-
90% of raw data is invalid due to cloud cover. There
has been preliminary research in the field of onboard

image preprocessing for remote sensing satellites. Be-
fore satellites backhaul, redundant information such as
cloud cover area can be eliminated in advance and the
data returned can be greatly reduced.

Downlinks can be unreliable. Existing systems
under a bent-pipe architecture stem from fundamen-
tal physical constraints simply downlink raw obser-
vations to ground stations. Surprisingly, one satellite
task lost 80% of its data packets due to downlink in-
stability [18]. The time-varying relationship between
the orbital position of the satellite and the geographic
location of ground stations imposes limitations on link
availability and can incur high downlink latency be-
tween data collection and processing. Any viable or-
bital system must directly address the unique physical
constraints. As an alternative paradigm, OEC colo-
cates processing hardware with high-datarate sensors
in low-cost satellites.

Onboard processing is on the rise. With the de-
velopment of onboard chip integration, the processing
performance of satellites has been improved. Onboard
systems have integrated multiple computing modules
such as CPUs, GPUs, DSPs and FPGAs [19]. Dif-
ferent from traditional CPUs, DSPs and GPUs have
stronger computing capabilities. For example, based
on embedded cluster computing, the next-generation
onboard computer makes a system architecture that
combines the master nodes (e.g., CPUs) and slave
nodes (e.g., GPUs, FPGAs and DSPs) for parallel pro-
cessing [20]. These processing units can work to-
gether to provide higher onboard computing and im-
prove reconfiguration capabilities. In a word, the en-
hancement of onboard computing processing capabil-
ity lays the foundation for OEC.

Enhancing OEC Landing with Cloud-Native
Technology. While computing resources at the LEO
satellite constellation enables OEC, meeting the de-
mand for flexible deployment in orbit remains a sig-
nificant challenge. Cloud-native techniques with con-
tainer and microservice empowers satellites to build
and run scalable applications in a modern, dynamic
environment. These techniques facilitate the devel-
opment of loosely coupled systems that exhibit re-
silience, manageability, and observability. Cloud-
native satellite overcomes challenges for unprece-
dented success in real-world deployment.

Previous works related to this topic in the net-
work/system community have been proposed. Denby
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et al. [6] propose an orbital edge computing archi-
tecture on satellite constellations to reduce system
edge processing latency. Vasisht et al. [21] present a
scheduler for multi-satellite, multi-ground station con-
figuration to reduce data downlink latency. Jinhyun
et al. [22] focus on the federated learning frame-
work, which dynamically schedules model aggrega-
tion based on the deterministic and time-varying con-
nectivity according to satellite orbits. [23, 24] also
present challenges of space-air-ground integrated net-
work architecture. [25, 26] discuss opportunities and
potential application areas for intelligence in space
systems. Our work is orthogonal to and compatible
with those above works. To our knowledge, we present
a novel approach to achieve high inference accuracy
through satellite-ground collaborative intelligence us-
ing cloud-native satellites. Our work marks the effort
in harnessing the full potential of cloud-native satel-
lite, thereby paving the way for enhanced efficiency
and accuracy in in-orbit computing.

III. DESIGN OF CLOUD-NATIVE SATEL-
LITES

With the expansion of LEO constellations and the ex-
plosive growth of satellite data, it is urgent to explore
how to effectively utilize local satellite data. Addition-
ally, local processing of satellite data is promising as
AI capabilities migrate from the cloud to edge nodes
[27]. However, each satellite has limited computing
capability and energy resources, making it difficult
to perform complex tasks independently. Satellite-
ground collaboration is proposed to facilitate intelli-
gent in-orbit computing. Also, motivated by cloud-
native, we first provide an overview of an individ-
ual cloud-native satellite. We then describe key tech-
niques involved in cloud-native satellite, which orga-
nizes a system that supports in-orbit computing.

3.1 Cloud-Native Satellite

As the first cloud-native satellite in the world, the
satellite leverages advanced techniques such as con-
tainers and microservices to realize in-orbit comput-
ing. As shown in Figure 2, we integrate communica-
tion, computing, and storage capabilities into cloud-
native satellites. The satellite provides open interfaces
that allow third parties to deploy applications. The
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Figure 2. The design of the cloud-native satellite. The com-
munication, computing, and storage capabilities are inte-
grated into the cloud-native satellite.

satellite also monitors and manages the operational
status and applications. Based on the storage capacity,
computing module provides onboard control capabil-
ities for basic and third-party ubiquitous applications.
Cloud-native satellites guarantee in-orbit service exe-
cution that mainly benefits from:

Rapid deployment Cloud-native satellite leverages
agile development and DevOps project management
models [28]. It not only enables users to deploy ap-
plications quickly and automatically but also contin-
uously updates onboard applications to keep up with
changes in demand.

Elastic expansion The satellite manages satellite-
ground clusters by automatically increasing or de-
creasing edge nodes. It also shrinks or expands re-
sources according to the real-world situation to im-
prove the utilization of onboard resources.

Highly autonomous Based on container technol-
ogy, cloud-native satellite encapsulates service func-
tions to achieve isolation and abstraction independent
of location and environment. Moreover, EdgeMesh,
as the data plane component of the KubeEdge clus-
ter, provides simple service discovery and traffic proxy
functions for satellite service, thereby shielding the
complex network structure in edge scenarios [29].

Safe and reliable Container orchestration is crucial
for large and dynamic production environments [8].
With container orchestration for microservices, on-
board applications can be automatically scaled, fault-
tolerant which copes with the complex environment of
space and keeps onboard applications available at all
times.

The emergence of cloud-native satellites bene-
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fits from the application management framework in
which satellites and the ground cloud work together.
KubeEdge [30] and its sub-project Sedna [31] pro-
vide unified resource and application management for
cloud-native satellites and improve application collab-
oration capabilities. The system architecture is shown
in Figure 3. Collaborative AI framework breaks model
training and inference space constraints. In the follow-
ing, we mainly introduce the two major frameworks:
KubeEdge and Sedna.

3.2 KubeEdge

KubeEdge is an open-source platform based on Ku-
bernetes that provides infrastructure support for appli-
cations by extending containerized application orches-
tration to satellites [30]. KubeEdge also synchronizes
deployments and metadata between central cloud and
satellite, which strongly supports:

Extremely lightweight The global resources of the
satellites are discrete and the local resources are lim-
ited to one satellite. The instability of the edge net-
work leads to frequent disconnection of edge satel-
lites and management systems. The platform extracts
the core functions of Kubelet and builds a lightweight
management software named EdgeCore to cover dif-
ferent scenarios. EdgeCore and CloudCore in the cen-
tral cloud provide data centers to meet exacting re-
quirements without compromise [32].

Reliable connection The network between satel-
lites and ground station often suffers from low band-
width and serious packet loss. The platform manages
edge-cloud messages in the same way, and the data is
still reliably transmitted in weak network scenarios.

Offline autonomous A lightweight management
component named MetaManager stores metadata [33].
When edge nodes go offline, applications are managed
and restored based on storage metadata. This method
not only brings less resource overhead but also ensures
the security of other satellite nodes in the cluster.

Cloud-edge collaboration Edge and cloud al-
ways work together to achieve end-to-end applica-
tions. KubeEdge provides an edge-cloud data ex-
change mode. More importantly, EdgeMesh pro-
vides unified service discovery and traffic proxying
between microservices. For example, the capabili-
ties of EdgeMesh-Server are merged into the tunnel
module of EdgeMesh-Agent, so that EdgeMesh-Agent

with relay capability can automatically become a relay
server, providing other nodes with the functions of as-
sisting hole punching and relaying.

3.3 Sedna

Sedna’s edge-cloud synergy is implemented for col-
laborative inference based on the capabilities provided
by KubeEdge. The component Global Manager in
Figure 3 unifies satellite-ground synergy AI task man-
agement and collaboration by well-supporting current
popular frameworks including TensorFlow/ Pytorch/
PaddlePaddle/ MindSpore, etc [31]. Sedna helps AI
applications migrate seamlessly to satellites by using
cloud-edge collaboration protocols to reduce cost, im-
prove model performance, and protect data privacy,
etc. In the following section, we discuss the major
components of Sedna.

Global Manager This component implements an
edge AI controller based on Kubernetes. Users cre-
ate CRD [34] to achieve model/dataset management,
AI task management for edge-cloud collaboration, and
edge-cloud coordination.

Local Controller This component performs local
process control of edge-cloud collaborative AI tasks.
Moreover, it also performs local general management:
models, datasets, state synchronization of AI tasks,
etc.

Worker This component performs AI tasks based
on the training/ inference procedures of existing AI
frameworks. Workers can be deployed on the edge or
in the cloud and they work together with each other.

Lib This component provides an edge-cloud collab-
oration interface for applications. Users can imple-
ment training/ inference and aggregation based on this
Lib.

3.4 Promising Application Scenarios

To address different tasks and challenges, cloud-native
satellites can support of diverse paradigms. Currently
supported computing protocols are as follows:

Collaborative inference Satellites cannot indepen-
dently perform complex inference tasks because of
limited resources and weak computing capability on
the satellite. The satellite performs one part of the
whole inference and offloads some tasks to the cloud
to improve the overall inference performance.

Incremental training Changes in data distribution,
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Figure 3. The workflow of satellite-ground collaborative inference system architecture.

such as weather, make the deployed model unable to
adapt to the current environment and the detection ac-
curacy decreases. For this challenge, satellites contin-
uously collect newly generated data and train models
in the cloud. The satellite nodes regularly fine-tune the
model from the cloud to improve accuracy.

Federated learning From the perspective of privacy
protection, federated learning can effectively alleviate
data silos because raw data is reluctant to share to the
cloud. The satellite trains the model and transmits the
parameters (i.e., training weights) to the cloud respon-
sible for parameter aggregation. The system also pro-
vides a secure data channel through KubeEdge and
supports encrypted transmission to ensure data secu-
rity. Such a protocol may train high-precision models
for privacy protection.

Lifelong learning Satellites suffer from data drift
and catastrophic forgetting of onboard models. Com-
bining incremental training and multi-task training,
satellite model enables knowledge transfer across time
and scenarios. Based on the knowledge library in the
cloud, satellite model can be continuously updated to
address unknown tasks.

Figure 4. A physical appearance of the Baoyun satellite.

IV. CASE STUDY: THE FIRST IN-ORBIT AI
COLLABORATIVE INFERENCE

We’ve successfully launched two new satellites,
Baoyun and Chuangxingleishen, and implemented
collaborative inference on these satellites using Kue-
beEdge and Sedna. Earth Observation satellites in-
corporate cloud-native computing capabilities. Table
1 shows the real-world specifications including vital
parameters such as mass, size for both satellites. Ad-
ditionally, Figure 4 provides a physical appearance of
Baoyun satellite. It’s worth noting that these satel-
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lites adhere to the CubeSat standard for design. The
control center operates on a Linux server, sending re-
mote instructions to the satellites. We’ve deployed
two different precision detection models, consisting of
lightweight, low-precision models onboard the satel-
lite for preprocessing to obtain preliminary results. On
the ground, large, high-precision models are situated
with high computing capabilities, which facilitate ac-
curate detection. The workflow of our collaborative
inference system is shown in Figure 5. The satellites
perform a preliminary detection using a lightweight
model to identify features of interest. If confidence
threshold in the results is high, the processed results
are sent back to the ground directly. However, if con-
fidence threshold is low, the satellite transmits the im-
ages to the ground, where the high-precision detection
model is used for exact detection. This system enables
efficient detection of captivating images and informa-
tion, ensuring that only essential data is transmitted to
the ground. Our experiments are based on the fact that
onboard inference can be performed anytime, when
satellite computation are available. The handover be-
tween them only occurs during the contact time be-
tween the satellite and the ground. Note that the shown
evaluations are conducted in Baoyun satellite. Inter-
estingly, the experimental results on different satellites
show that the inference system can achieve consistent

results on satellites of different specifications.

Onboard image splitting significantly reduces the
occurrence of redundant images caused by cloud
cover. We conducted experiments on the widely-used
DOTA [35], object detection dataset. We propose a
strategy to split the images into smaller images be-
fore performing in-orbit inference. This approach is
necessary due to the limited computing power of the
satellite, which cannot handle high-resolution images.
Figure 6 illustrates the reduction in redundant images
during in-orbit operations. We observe that splitting
the large images into smaller fragments, irrespective of
the fragment size, leads to a remarkable 90% and 40%
decrease in images for the two versions of the datasets,
respectively. As a result, in-orbit processing approach
offers the dual benefits of reducing the number of im-
ages and conserving significant bandwidth. Collab-
orative inference yields a significant improvement in
accuracy. Our satellite-ground collaborative inference
system incorporates YOLOv3-tiny and YOLOv3 ob-
ject detection models for onboard and ground detec-
tion, respectively. To assess the accuracy of our sys-
tem, we use the mean average precision (mAP) met-
ric, which compares ground-truth bounding boxes to
detected boxes and returns a score. A higher score in-
dicates more accurate detection [36]. We analyzed the
accuracy of our system through in-orbit and collabora-
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Table 1. Satellite platform specifications.

Name
Launch
Time

Orbital
Altitude

(km)

Mass
(kg)

Load
Size
(U)

Size
(U)

Operating
System

Uplink
Rate

(Mbps)

Downlink
Rate

(Mbps)

Baoyun
Dec. 7
2021

500±50 20 0.25 12
Ubuntu Server

20.04 arm
0.1∼1 ≥40

Chuangxing
leishen

Feb. 27
2022

500±50 20 0.25 6
Debian Buster with

Raspberry Pi
0.1∼1 ≥40

Figure 6. The filter rate of redundant data in orbit on
DOTA.

tive inference methods, as shown in Figure 7. The re-
sults demonstrate a remarkable accuracy enhancement
of 44% and 52% respectively when employing collab-
orative inference compared to in-orbit inference. On
average, our collaborative inference system achieves
an approximate 50% improvement in accuracy. Ad-
ditionally, a significant number of redundant images
were detected. By performing preprocessing onboard
and directly transmitting the inference results to the
ground station, our system successfully reduced the
amount of data returned by 90%.

According to the energy consumption analysis pre-
sented in Table 2, Baoyun satellite’s energy system
primarily powers its payloads, accounting for approx-
imately 53% of the total energy consumption. The re-
maining energy is utilized for basic satellite functions
such as communication and propulsion. Further delv-
ing into the energy consumption of the satellite’s pay-
loads, Onboard equipment measures the voltage and
current of each power system and records the teleme-
try data, which is then transmitted to the ground. The
reported power consumption is recalculated based on
the collected data. Table 3 presents a breakdown

Figure 7. Accuracy (mAP in object detection task) of in-
orbit vs. collaborative inference.

of the subsystems responsible for satellite computing
and their corresponding power consumption, includ-
ing the camera that captures remote sensing images.
Among these power subsystems, the Raspberry Pi sys-
tem accounts for the largest proportion of energy con-
sumption, representing 33% of the total energy con-
sumed by the payloads. In summary, computing on
the Baoyun satellite accounts for about 17% of en-
ergy consumption. The presented data sheds light on
the energy allocation and consumption patterns of the
satellite, offering value for optimizing its operational
efficiency and ensuring its long-term sustainability.

V. CONCLUSION

This paper introduces the emergence of a cloud-native
satellite that directly leverages onboard computering
for remote sensing tasks. It explores various execu-
tion protocols such as collaborative inference, feder-
ated learning, incremental learning, and lifelong learn-
ing. Additionally, we launched the first cloud-native
satellite and implemented the collaborative inference
system on the satellite, with the ultimate objective of
achieving high inference accuracy through the use of

© China Communications Magazine Co., Ltd. · April 2024 215

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 10:18:28 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. Real power distribution of energy consumption system in Baoyun satellite.

Item
Electrical

Subsystem
Propulsion Guidance Avionics Comm. Payloads Sum

Power(W) 1.47 7.00 5.43 4.81 5.43 26.93 51.07

Table 3. The power of payloads subsystem of Baoyun satellite.

Item Camera Occultation Tribology Mems Adsbs Raspberry Pi

Power(W) 0.09 6.26 5.68 0.95 6.12 8.78

cloud-native satellites.
In the future, we plan to deploy this project in

batches across other satellites of Tiansuan constel-
lation, thereby establishing a collaborative comput-
ing network in space. We also expect cloud-native
satellites to unlock new capabilities in precision agri-
culture, infrastructure monitoring, humanitarian assis-
tance, etc [37].
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