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Abstract—Large constellations of Low Earth Orbit (LEO) satel-
lites have been launched for Earth observation and satellite-ground
communication, which collect massive imagery and sensor data.
These data can enhance the AI capabilities of satellites to address
global challenges such as real-time disaster navigation and miti-
gation. Prior studies proposed leveraging federated learning (FL)
across satellite-ground to collaboratively train a share machine
learning (ML) model in a privacy-preserving mechanism. How-
ever, they mostly focus on single unique challenges such as limited
ground-to-satellite bandwidth, short connection window, and long
connection cycle, while ignoring the completeness of these chal-
lenges in deploying efficient FL frameworks in space. In this paper,
we propose an efficient satellite-ground FL framework, SatelliteFL,
to address these three challenges collectively. Its key idea is to
ensure that each satellite must complete per-round training within
each connection window. Moreover, we design a progressive block-
wise quantization algorithm that determines a unique bitwidth for
each block of the ML model to maximize the model utility while
not exceeding the connection window. We evaluate SatelliteFL by
plugging an implemented FL platform into real-world satellite
networks and satellite images. The results show that SatelliteFL
highly accelerates the convergence by up to 2.8× and improves
the bandwidth utilization ratio by up to 9.3× compared to the
state-of-the-art methods.

Index Terms—In-orbit computing, satellite network, federated
learning.

I. INTRODUCTION

OVER the years, Earth observation satellites have con-
sistently provided rich informational support in critical

areas such as food security, disaster navigation, climate change,
and disease spread [1], [2], [3]. In recent years, significant
advancements in satellite technology have substantially reduced
satellite deployment costs, leading to the emergence of low
Earth orbit (LEO) satellite constellations as a mainstream trend.
For example, companies like Planet [4] are now able to collect
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Fig. 1. (a) LEO satellite constellations comprise many low-Earth orbit satel-
lites, which orbit 500 to 2,000 kilometers from Earth and offer communication
services collaborated with the ground stations; (b) Satellite-ground FL frame-
work in space without downloading satellite data to the ground.

over 350 million square kilometers of images daily. Massive
imagery and sensor data (10 s–100 s of TB/day) collected
by these satellites can effectively enhance machine learning
(ML) capabilities to address numerous global challenges. For
example, the Sunflower Satellites, with the aid of AI model, can
spot wildfires in less than 1 minute, which could have been used
to avoid the 2019-2020 Australian ‘Black Summer’ bushfire with
over $70 billion in property and economic losses [5].

Traditional satellite-based machine learning tasks are mostly
completed on the ground. Those collected data by LEO con-
stellation, in Fig. 1(a), is transmitted to the ground station
across satellite-to-ground link, and used to train ML models
with a powerful computation cluster. However, this paradigm
is becoming increasingly infeasible for the following reasons:
1) downloading the raw data collected from satellites would raise
substantial overhead to the satellite-ground link. Nevertheless,
the current satellite-ground link bandwidth does not even support
the download of all the collected data. 2) sharing high-resolution
Earth observation images, such as rare natural resources and
significant economic activities may not always be feasible due
to regulatory restrictions imposed by different countries [6].

There have been several efforts that dedicate to deploying
in-orbit computing to address these challenges, which is moti-
vated by the improvement of satellite computation capabilities.
OEC [7] is a proposed orbital edge computing platform to
support various computing tasks on satellites so that those col-
lected data can be processed locally. SmallSats [8] aims to bring
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efficient inference and training of DNNs in space by introducing
lightweight hardware accelerators and designing compact ML
algorithms. However, it also faces two key challenges with the
deployment of on-board training. First, centralized ML on a
single satellite with limited training data is hard to obtain an ad-
vanced model, due to privacy concerns when exchanging sensi-
tive imagery data across LEO satellites [2]. Second, considering
the memory and power cost of inter-satellite communication,
cross-satellite distributed ML in space is currently infeasible in
LEO satellite constellations [9].

Our goal in this work is to address these challenges by
designing an efficient FL framework that enables satellites to
collaboratively train a shared ML model with the coordination
of ground stations. Our system is designed with several steps
as shown in Fig. 1(b): (1) the global model is dispatched to
those connected satellites through ground-to-satellite link; (2)
connected satellites run on-board training to update local models
without sharing their raw data; (3) these models are transmit-
ted to the ground station through the satellite-to-ground link
for global model aggregation. These steps form per-round FL
training and iterate with another batch of connected satellites in
the next round until the global model converges. Some prior
literature [2], [10], [11], [12] also introduces FL framework
across satellites and ground stations to enable efficient AI appli-
cations in space. Most of them focus on tackling the straggler
and staleness problems of synchronous or asynchronous FL
algorithms, due to the system heterogeneity of satellites [2],
[13]. Another important problem in this satellite-ground FL
framework is the slow model convergence caused by limited
ground-to-satellite bandwidth [10], [12]. However, it is still
fundamentally challenging to apply existing solutions to this
environment when considering all the unique challenges intro-
duced by orbital dynamics of LEO satellites:
� Limited ground-to-satellite bandwidth: Dispatching the

global model to connected satellites through the ground-to-
satellite link is a key step in this environment to guarantee
the success of FL training. However, the ground-satellite
link is asymmetric. Specifically, the ground-to-satellite
link bandwidth is extremely limited, often only about 200
Kbps [14]. Thus, even if the satellite-to-ground download
bandwidth is as high as a few Gbps, the entire FL train-
ing speed will be severely constrained by the ground-to-
satellite link.

� Short connection window: Considering the orbital dynam-
ics of LEO satellites and limited deployment of ground
stations on Earth, each satellite tends to stay a short time
(≤ 10 minutes [14]) in the coverage of a particular ground
station before flying away. This causes the per-round FL
training to be interrupted because it is often impossible
to complete the above steps in such a short connection
window. Especially, the first step of per-round FL train-
ing across the limited ground-to-satellite link makes this
interruption more frequent.

� Long connection cycle: Furthermore, each satellite would
only get several connection periods with ground stations
in one day, and it often takes over 6 hours [14] for any
two connection periods. Therefore, once a satellite fails to

transmit its model update to the ground in the assigned
connection window, it takes excessive time to wait till the
next connection window and the update is likely to be
expired.

In this paper, we present an efficient satellite-ground FL
framework, namely SatelliteFL, that leverages progressive
weight quantization to compress the communication data size
across ground-to-satellite links. (Quantization involves repre-
senting model parameters with fewer bitwidth to reduce model
size while maintaining acceptable neural network model per-
formance degradation.) We first highlight the importance of
ensuring that each satellite must complete the per-round FL
training within each connection window to tackle the above three
challenges. Then, we formulate this per-round FL training as a
delay-constrained optimization problem to maximize the model
utility while not exceeding the connection window. However,
solving this optimization problem is also challenging due to the
complex trade-off between model utility and constrained con-
nection window caused by the limited decision space of quan-
tization bitwidth. Finally, we propose a progressive block-wise
quantization (ProBQ) algorithm that fine-grained quantizes each
block of model with a unique quantization bitwidth, which can
solve the problem and achieve near-optimal performance. The
rationale is that we cherry-pick a proper quantization bitwidth
for each block of ML model, instead of the whole model; it makes
full use of the ground-to-satellite link bandwidth therefore re-
tains more weight information to improve the model accuracy.

We evaluate SatelliteFL on our implemented FL platform
plugged in real-world satellite networks. Extensive experiments
are performed on classical ML models and open-source satellite
imagery data, and we will also open-source our platform once
published. The results show that, SatelliteFL can accelerate the
convergence by 1.8×(on average, up to 2.8×) and improve the
bandwidth utilization ratio by 4.5×(on average, up to 9.3×)
compared to the state-of-the-art satellite-ground FL methods.

We make the following contributions:
� We formulate the collaborative satellite-ground training

problem, with ground-to-satellite bandwidth, short con-
nection window and long connection cycle, as a delay-
constrained optimization problem. To tackle these chal-
lenges, we introduce an efficient satellite-ground FL frame-
work that each satellite should complete per-round FL
training within each connection window.

� We propose a progressive block-wise quantization algo-
rithm to maximize the model utility while not exceeding
the connection window.

� We validate the effectiveness of our solution with real-
world satellite networks and satellite imagery dataset, and
show that it significantly accelerates FL training and im-
prove the bandwidth utilization ratio over the state-of-the-
art methods.

II. BACKGROUND AND MOTIVATIONS

In this section, we first introduce the communication model
of satellite-ground dynamic links and the system model of FL
at LEO satellites. Then, we formulate the optimization model of
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Fig. 2. LEO satellite operates in orbits with two angles and its connection
window is related to the signal coverage of ground station. (1) The location of
the satellite with respect to a ground station on Earth is defined by the two angles
azimuth and elevation; (2) The connection window of the satellite is determined
by its orbit and the signal coverage of ground station on Earth, which also
indicates the connection window of this satellite at a time.

deploying FL framework across satellites and ground stations
based on the unique communication model. Finally, we highlight
the key obstacles and the limitations of existing solutions to en-
able communication-efficient FL training in this satellite-ground
cooperative environment.

A. Communication Model of Satellite-Ground Link

In an Earth observation scenario, we first illustrate the back-
ground of LEO satellites related to the dynamic communication
link. Then, we introduce two important definitions of connected
satellite and connection window.

In Fig. 2, there are two observation angles: azimuth and
elevation that decide the location of a satellite with respect to a
ground station on Earth. The former denotes the angle between
the North pole, measured clockwise around the ground station’s
horizon, and the satellite, while the latter denotes the vertical
angular distance between the satellite and the ground station’s
local horizon. Specifically, when the satellite passes directly over
the ground station, the elevation angle reaches its maximum
value of 90 degrees. Due to the satellite’s low orbit, it often
takes only a few minutes for a satellite with a low elevation (β1

in Fig. 2) from entering the signal coverage of a ground station
to leaving it. But, with a higher elevation (β2 > β1), this satellite
gets closer to Earth’s surface, thus delivering a longer connection
window as shown in Fig. 2. These observations reveal that: (1)
satellites aren’t always connected to ground station, nor are they
intended to be; (2) and even when they do, each connection
window is short.

Consider a collection LEO satellites S and ground stations G
for Earth observation. We introduce a continuous wall clock time
t and a discrete time index i ∈ {0, 1, 2, . . .} with each adjacent
time indexes having τ wall clock time interval. We denote the
wall clock time interval from iτ to (i+ 1)τ as [i]. If a satellite
s ∈ S is captured by a ground station g ∈ G at any time t ∈
[i], their communication link would be established. We define
the satellite s as a connected satellite in time interval [i]. As

s moves out of signal coverage of g, the link breaks, and s is
no longer a connected satellite. We define the duration of this
link as connection window, which is denoted as τd, and we have
τd ≤ τ .

In this work, we assume that all the ground stations work
as a powerful computing cluster without considering the trans-
mission delay across those geographically-distributed ground
stations. This assumption is theoretically sound because the
fabric connectivity among them is always well-provisioned and
much faster than the satellite-ground links [15]. Therefore, a
satellite connected to anyone ground station can be considered
to be connected to a cluster with all the ground stations G.

B. Optimization Model of Satellite-Ground FL

LEO satellites in this Earth observation scenario have col-
lected a lot of imagery and sensor data to train a global
model. Due to data privacy and bandwidth limitation concerns,
a satellite-ground cooperative FL framework is proposed to
collaboratively learn this model with on-board training and
on-ground coordination in Fig. 1(a). We follow the classical
synchronized stochastic gradient descent (SGD) method to for-
mulate this cooperative FL process.

Consider K satellites in S and a cluster with ground stations
G. For each satellite k ∈ {1, 2, . . . ,K}, it collects and stores
an imagery dataset Dk. These satellites aim to collaboratively
learn a global modelω by minimizing a global objective function
F (ω) as follows:

min
ω

{
F (ω) =

K∑
k=1

nk

n
fk(ω)

}
, (1)

wherenk = |Dk| denotes the samples of training data at satellite
k, fk denotes the local objective function of satellite k, and
we have n =

∑K
k=1 nk. The global model ω is maintained and

advanced on the cluster of ground stations. We introduce the
most popular FL protocol, FedAvg [16], that performs local SGD
algorithm on satellites and aggregates those models of satellites
on the ground to advance global model. In particular, we only
randomly select Ks satellites from Kc connected satellites in
each round, where Kc ≤ K. The local update on each selected
satellite k ∈ Ks can be formulated as

ωk
r+1 = ωr − η∇fk(ωr), (2)

where η denotes the hyper-parameter learning rate and r denotes
the global training round across satellites and ground stations.
The global update is to aggregate the received models from Ks

selected satellites, which can be formulated as

ωr+1 =
∑
k∈Ks

nk

n
ωk
r+1. (3)

Consider the wall clock time during per-round of FL training,
which includes three key steps: 1) dispatching global model
to each satellite; 2) on-board training to update local model;
3) sending local model to ground station. We denote the time
of above three steps as tg,s, tc and ts,g, respectively. In this
satellite-ground FL framework, it is highly likely that some
satellites’ per-round of FL training will be forced to stop due
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Fig. 3. LEO satellite’s three distinctive characteristics on satellite-ground connection [17], [18], [19].

Algorithm 1: Satellite-Ground FL Framework.

to the disconnection of satellite-ground links. We describe the
procedures of this framework in Algorithm 1.

C. Challenges of Deploying Efficient FL in Space

As illustrated above, those participating satellites in each
round are selected from those connected satellites with deter-
mined connection window, which makes the satellite-ground
communication crucial in the FL optimization. However,
satellite-ground communication substantially differs from tra-
ditional communication on the ground in three aspects.

Limited Ground-to-Satellite Bandwidth. In Earth observation
scenario, the communication links from the ground station to
satellite are typically designed to transmit control signaling,
thus resulting in very low bandwidth. In addition, expanding
this ground-to-satellite bandwidth is often highly expensive due
to the huge monetary cost and serious heat dissipation when re-
placing Earth-dial links with satellite communication links [20],
[21], [22]. Therefore, the ground-to-satellite bandwidth is often
hundreds of Kbps as shown in Fig. 3(a), although the ground

station today supports Gbps satellite-to-ground bandwidth [1],
[14], [23]. Our preliminary experiments show that transmitting
a ResNet18 [24] model to ground station only costs 0.4 seconds,
yet it takes nearly one hour for the aggregated model on ground
station to be dispatched to connected satellites. The extreme
ground-to-satellite bandwidth breaks down the widely-accepted
assumption of symmetric upload/download bandwidth in tradi-
tional FL.

Short Connection Window. Traditional FL on ground runs
in a well-connected distributed system with a number of high-
performance network infrastructures to guarantee their superior
connection conditions. However, due to the orbital dynamics of
LEO satellites and limited deployment of ground stations on
Earth, the established communication link usually only lasts for
a short time. For example, it is often several minutes at a time,
and in most cases no more than ten minutes as shown in Fig. 3(b).
Our preliminary experiments on ResNet18 model show that 80%
of the satellites fail to complete the per-round FL training under
these stringent connection windows.

Long Connection Cycle. Given the frequent failure in one con-
nection window mentioned above, many satellites would attempt
to complete the previously failed steps in the next connection
window. However, apart from the short connection window,
the orbital dynamics of satellites and limited deployment of
ground stations also lead to a very long connection cycle of
satellite-ground communication links. Fig. 3(c) shows that each
satellite would only get several connection periods with ground
stations in one day, and it often takes many hours for any two
connection periods. Therefore, this makes it infeasible to pick
up the failed steps in the next connection window, due to the
expired weights with large staleness.

D. Limitations of Existing Solutions

The aforementioned unique challenges have not been thor-
oughly studied, leaving us with ample room for improvement.
This drives us to delve deeper into how to enable satellites in
space with efficient intelligent processing capabilities. Based
on existing efforts made from various perspectives, we group
related work into three categories:

AI on Satellites. Several categories of work relate to en-
abling AI capability of LEO satellites. OEC [7] and Tiansuan
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constellation [25] proposed to build the orbital edge computing
platform to support various computing tasks on satellites so that
those collected data can be processed in space. Model inference
on satellite [8], [26], [27], [28], [29] is the key to improving the
image process capacity, which can help to efficiently analyze
the massive collected Earth observation image. To tackle the
challenges of satellite networks, some early research [30], [31]
proposed to execute distributed machine learning in space. Their
goal is to enable ML model to work better under a limited
computing power and communication bandwidth of satellites.
However, considering the memory and power cost of inter-
satellite communication, cross-satellite distributed ML in space
is currently infeasible in LEO satellite constellations.

Federated Learning in Space. Federated learning [32], [33], a
collaborative machine learning paradigm, has been introduced
to enable satellites to collaboratively train an ML model with
the coordination of ground stations [2], [10], [11], [13], [34],
[35]. Most of them focus on tackling the straggler and stale-
ness problems of synchronous or asynchronous FL algorithms,
due to the system heterogeneity of satellites [2], [13]. Other
research aim to accelerate the slow model convergence caused
by limited ground-satellite bandwidth [10], [12], [34], [35].
However, it is still fundamentally challenging to apply existing
solutions to this environment when considering all the unique
challenges introduced by orbital dynamics of LEO satellites:
limited ground-satellite bandwidth, short connection window
and long connection cycle. This motivates us to tackle those
challenges together to enable communication efficient FL in
space.

Model Quantization for Communication Efficient FL. Quanti-
zation for FL [36], [37] is an approach that allows several devices
to update models using low bitwidth gradients, maintaining
accuracy while reducing their communication cost. Most ex-
isting neural quantization approaches focus on how to prune the
redundant gradient information in the training processing, e.g.,
replacing the default numerical FP32 gradients with INT8 and
even INT4 [38], [39], [40], [41], [42], [43], [44], [45]. Instead
of contributing a novelty accuracy-first FL quantization training
algorithm, our goal is to design a generic system to efficiently
support in-orbit satellite training under dynamic ground-satellite
connection in reality.

In this paper, our goal is to enable satellites with effective
intelligent processing capabilities under aforementioned unique
challenges. Notably, some new Earth observation satellites have
been launched in recent years with ground-satellite bandwidth
up to tens of Mbps [46], but the majority of orbiting satellites,
particularly those launched earlier, maintain only hundreds of
Kbps bandwidth [47], [48], [49], [50]. Besides, as the scale of a
satellite network increases, the actual bandwidth allocation per
satellite diminishes. Thus, deploying communication-efficient
FL framework across satellites and ground stations to enable
satellites with effective intelligent processing capabilities is
crucial and meaningful.

III. DESIGN OF SATELLITEFL FRAMEWORK

This section proposes a satellite-ground FL framework (Satel-
liteFL) with a progressive block-wise quantization algorithm

Fig. 4. Overview of our SatelliteFL framework with K satellites and a cluster
of ground stations. Each satellite has c connection windows to the ground station
in one day.

(ProBQ) to improve communication efficiency during FL train-
ing across satellites and ground stations. Its key idea is to
ensure that each satellite completes per-round FL training
within each connection window by progressive weight quanti-
zation. Section III-A first illustrates the overview of SatelliteFL.
Section III-B1 formulates the objective of SatelliteFL as a delay-
constrained optimization problem. Section III-B2 proposes the
ProBQ algorithm, which can approximately solve this problem.

A. SatelliteFL Overview

We show the detailed illustration of our SatelliteFL framework
in Fig. 4. Overall, SatelliteFL also adopts a C/S architecture,
where a central server served by ground stations maintains and
keeps advancing a global model, and the client refers to a col-
lection of LEO satellites. These satellites dynamically establish
communication links with ground stations in the process of
orbiting Earth.

Each satellite in SatelliteFL is responsible for three tasks:
(1) It dequantizes the received integer (INT) model into 32-bit
float (FP32) one; (2) The dequantized FP32 model, along with
the local data, are used to obtain an advanced model by on-
board training; (3) It maintains the connection information, such
as link bandwidth and connection window. The updated FP32
model and connection information are transmitted to the ground
stations for global model updating. Considering the relatively
fixed satellite orbit and ground station deployment, the daily
connection of each satellite is predictable, but the connection’s
bandwidth and window can only be determined once the link
is established. Section III-B specifically analyzes the impact of
these dynamic connections on the satellite-ground FL training.

Ground station serves as two key roles: aggregator and quan-
tizer. The aggregator is responsible for aggregating the received
FP32 models from satellites, and obtaining an advanced global
model. The quantizer is responsible for quantizing the global
model into multiple INT models, which are adaptive to the
connection information in the satellite profiles. Its goal is to
improve the model utility under the communication constraints,
which is formulated as a delay-constrained optimization prob-
lem (details in Section III-B1). Then, it adopts a progressive
block-wise quantization algorithm that fine-grained quantizes
each block of model with a unique quantization bitwidth to solve
this problem (details in Section III-B2). Finally, these quantized
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INT models are dispatched to corresponding satellites through
the ground-to-satellite link.

B. Delay-Constrained Optimization Problem

1) Problem Formulation: Consider a connected satellite par-
ticipating in this round of FL training, the ground station obtains
its connection window τd, ground-to-satellite bandwidth bg,s
and satellite-to-ground bandwidth bs,g . The ground station also
maintains a global model ω and launches a round of FL training
with three steps. First, it would quantize this model into INT
format to accelerate the communication from ground station to
satellite, which can be formulated as

ω(γ) = quantize(ω, γ), γ ∈ S, (4)

where γ is the quantization bitwidth to represent the INT format
model ω(γ) and N is a set of available bitwidth specifications
for hardware devices on satellite. Then, the quantized model
ω(γ) with γ-bit INT format is sent to this satellite through the
ground-to-satellite link. After receiving this quantized model,
the satellite would dequantize this INT model to obtain de-
quantized model ω′(γ) with FP32 format, and run on-board
training with ω′(γ). Finally, the locally updated model with
FP32 format is transmitted to the ground station through the
satellite-to-ground link. The original model ω and dequantized
model are represented in FP32 format. We denote the data size
of model as | · |, thus

γ

32
=

|ω(γ)|
|ω| , and |ω′(γ)| = |ω|. (5)

The implication of (5) is that the compression rate of the ω(γ) to
the originalω is γ

32 , and the data size of dequantized modelω′(γ)
is the same as global model ω. So, a smaller γ attributes to fewer
communication data, thus accelerating the model transmission
from the ground station to the satellites.

Let t denote the per-round time for anyone connected satellite
participating in the FL training to complete the above three steps.
We do not consider the computation time of model quantization
and dequantization, because it only needs to conduct a few scalar
multiplications that are much less complex than local model
updates. Therefore, we have the per-round time t as follows.

t = tg,s + tc + ts,g, (6)

where tg,s is the communication time for ω(γ) to be transmitted
from the ground station to the satellite, tc is the computation
time for the model training on satellite, and ts,g is the communi-
cation time for updated model based on ω′(γ) to be transmitted
from the satellite to the ground station. We calculate the two
communication time based on the transmission data size and
link bandwidth as follows:

tg,s =
|ω(γ)|
bg,s

=
|ω| · γ
32 · bg,s , (7)

and

ts,g =
|ω′(γ)|
bs,g

=
|ω|
bs,g

. (8)

The computation time tc is spent updating ω′(γ) by SGD al-
gorithm, which is related to the hardware devices on satellite
and ω.

Recall the global objective function F (ω) in (1). Our goal
is to minimize each F (ω) in our SatelliteFL with two key
considerations: 1) ensuring that per-round FL training does not
exceed the connection window τd of this satellite in this round;
2) the numerical error between the dequantized ω′(γ) and the
original ω without quantization should not exceed the threshold
ε to ensure the global model accuracy. We introduce weight
divergence between ω′(γ) and ω to quantify their numerical
error: | ||ω||−||ω′(γ)|| |

||ω|| . So, we formulate this problem

P1 : min
γ

{
F (ω) =

∑
k∈S

fk(ω
′(γ))

}

s.t.
|ω| · γ
32 · bg,s + tc +

|ω|
bs,g

≤ τd,

| ||ω|| − ||ω′(γ)|| |
||ω|| ≤ ε,

γ ∈ N .

Solving P1 is challenging for the following reasons. First, a
smaller γ attributes to fewer communication data, thus accel-
erating the transmission across ground-to-satellite. However, a
larger γ is required to represent more information of original ω,
thus reducing the numerical error introduced by quantization.
Second, it is generally impossible to obtain an exact analyti-
cal relationship to connect local objective function f with the
dequantized ω′(γ).

2) Analysis of P1: Low bitwidth quantization, while
transmitting-friendly, severely limits the expressiveness of the
updated information. Updating the local parameters on satellite
with such limited information thus may not improve the quality
of local models, even making them worse. We first analyze the
deficiency of naive uniform quantization to solve P1. Then, we
dive into the sensitivity of the bitwidth of quantization to model
structure, and translate the above problem to P2.

Naive uniform quantization is to decide a unique γ to quantize
all the weights of global FP32 model, which aims to ensure
that each satellite must complete per-round training within each
connection window. Based on the estimation of computation
time and communication time, we choose as large bitwidth as
possible to quantize model, while satisfying the constraint of
connection window. However, this scheme leads to a serious
deficiency in the model accuracy and bandwidth utilization as
shown in Fig. 5. The reason behind is that limited decision space
on γ makes it difficult to achieve a complex balance between the
constraints of connection window and quantization error.

Therefore, we dive into the impact of model architecture
on accuracy performance when deciding different quantized
bitwidth γ. Since the classical model architectures tend to have
several blocks, conceptualized as analogous to the ventral visual
blocks [51]. We then conduct a comprehensive measurement on
each block with different low bitwidth, separately. We obtain two
key observations from these experimental results that motivate
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Fig. 5. Deficiency of naive uniform quantization on model accuracy and
bandwidth utilization.

Fig. 6. Comparison of traditional fully FP32 blocks (FP32) and only one
quantized block with INT4 bitwidth representation (B1-B6: Block1-Block6).

Fig. 7. Hybrid bitwidth quantization across FL training round with
DenseNet121 on two datasets. The deep V regions marked in red represent
the lower accuracy when using fully INT4 quantization in this round.

our further design. The settings of measurements are consistent
with Section IV-A.
• Observation 1: The impact on the accuracy varies greatly

when quantizing different blocks with low bitwidth, blocks in
the middle layer are less suitable for low bitwidth quantization.
Fig. 6 shows the end-to-end accuracy performance when using
4-bit quantization in each single block, while other blocks in
this model use FP32 representation. Most of the blocks suffer
accuracy degradation when using low bitwidth quantization. For
example, block2, block3, and block4 of DenseNet121 cause
up to a 35%–67% accuracy loss, while there is less than 6%
accuracy loss when quantizing block1 and block6. Therefore, it
is worth that we can improve the efficiency of model accuracy
and bandwidth utilization (in Fig. 5) by cherry-picking suitable
blocks for low bitwidth quantization.
• Observation 2: High bitwidth quantization on blocks can

make up for the accuracy loss caused by low bitwidth quan-
tization quickly. Fig. 7 shows the accuracy performance when

using hybrid bitwidth quantization across FL round on all blocks.
Note that the four marked regions denoting the lower obtained
accuracy with full INT4 quantization. The lower accuracy im-
mediately reverts to a higher level in the next few rounds when
turning to INT8 (or INT16, INT32) quantization. The behind
reason is that a higher bitwidth representation retains more cor-
rect gradient information than a lower one, which can revise the
incorrect updating direction and mitigate the accuracy degrada-
tion. This motivates us to introduce hybrid bitwidth quantization
among different blocks for efficiency improvements during the
FL training.
• Implications.In summary, low bitwidth quantization as a

strategy to reduce model parameters, make an obvious accuracy
degradation. However, some specific blocks will not suffer this
serious performance loss, and the high bitwidth quantization can
mitigate the accuracy degradation caused by the low bitwidth
quantization. To enable a practical scheme with tolerable ac-
curacy degradation and full link utilization, the quantization
paradigm needs to be re-architected.

Therefore, we introduce the block-wise decision of γ to P1.
For anyone model ω, we have m blocks

ω = {ω1, ω2, . . . , ωm}, (9)

where ωi denotes a block of ω and i ∈ [1, 2, . . . ,m]. For anyone
block ωi ∈ ω, we decide a unique bitwidth γi to quantize this
block with FP32 format into INT format with γi bit representa-
tion. Then, we get a new decision vector Γ

Γ = {(ω1, γ1), (ω2, γ2), . . . , (ωm, γm)}. (10)

Consider the new quantization decision on ω, we re-calculate
the communication time tg,s from ground station to satellite

tg,s =

∑m
i=1 |ωi(γi)|

bg,s
=

∑m
i=1 |ωi| · γi
32 · bg,s , (11)

where ωi(γi) denotes the quantized block ωi with bitwidth
decision γi. We also dequantize block ωi(γi) (i ∈ [1, 2, . . . ,m])
one by one, and organize them to obtain the dequantized model
ω′(Γ) with FP32 format.

Finally, we translate P1 into P2 as:

P2 : min
Γ

{
F (ω) =

∑
k∈S

fk(ω
′(Γ))

}

s.t.

∑m
i=1 |ωi| · γi
32 · bg,s ≤ τd − tc − ts,g,

| ||ω|| − ||ω′(Γ)|| |
||ω|| ≤ ε,

∀γi ∈ Γ, γi ∈ N .

In problem P2, the objective is to minimize the each F (ω)
in our SatelliteFL with two key considerations. Note that this
F (ω) is controlled by the decision vector Γ in each satellite.
One of the key considerations is how to ensure that per-round FL
training does not exceed the transmission time τd − tc − ts,g of
this satellite in current round, and the per-round FL training time
is determined by the current decision vector Γ in each satellite
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Algorithm 2: Satellite-Ground FL With ProBQ Design.

model. The other key consideration is how to ensure that the
numerical error between the dequantized model and original
model should not exceed the threshold ε. Therefore, problem
P2 is a nonlinear integer dynamic optimization problem [52],
[53]. To solve P2, we need to find out how the value of Γ affects
the loss function F and the weight divergence | ||ω||−||ω′(γ)|| |

||ω|| .
However, it has been proved that problem P2 is a classical NP-
hard problem [54] over Γ, and in reality, algorithm with reduced
computation complexity is required to solve P2. Meanwhile,
considering the relatively limited integer bitwidth supported by
satellite hardware, the greedy strategy can be used to solve it
well. Thus, we adopt the greedy idea to obtain a suboptimal
solution in designing Algorithm 2.

Intuitively, as long as the bitwidth of quantization is larger, the
practical training loss would be closer to the original FP32-based
loss and the quantization error would be smaller. Therefore, the
key is how to choose the maximum quantization bitwidth. As
long as connection window is guaranteed by this decided bit
width, the model utility can be improved to the maximum. And
the available bitwidth specifications for hardware devices on

satellite are very limited (like INT2, INT4, INT8, etc.), which
means the decision space of γ is also small. Therefore, we can
adopt a greedy algorithm to solve this problem in a short clock
time.

C. Progressive Block-Wise Quantization Algorithm

In this section, we propose a progressive block-wise quanti-
zation algorithm (ProBQ) that quantizes each block of a model
with a suitable bitwidth based on the above observations. This
novel design compensates for the quantization error as much as
possible on the premise of guaranteeing the model update in each
transmission process. Its core technical designs are two-fold:
(1) adaptive quantization on fine-grained blocks to achieve a
better trade-off between model utility and delay constraints; (2)
FP32-guided dequantization on low bitwidth model to enable
high precision on-board training. Algorithm 2 describes the
workflow of our SatelliteFL with proposed ProBQ algorithm.

We first introduce two key variables in our decision vector to
help describe the algorithm: N and ω. Consider a finite space
with n positive integers N = {b1, b2, . . . , bn} that represents a
set of available bitwidth specifications for hardware devices on
satellite. In most cases, it supports only several types of bitwidth.
(like INT2, INT4, INT8, etc.) We sort this set by the number of
bitwidth in reverse, which means that the first element of N
is the maximum bitwidth to quantize each block. Consider a
general ML model ω with m blocks. Based on the prior profile
information that the impact degree on the model accuracy when
quantizing different blocks with a low bitwidth as shown in
Figs. 6 and 7. We sort model’s all blocks as this impact degree
from smallest to largest to obtain a sorted list of blocks: ω =
{ω1, ω2, . . . , ωm}.

Then, under the satellite-ground cooperative mechanism in
this framework, we focus on the introduction of the ProBQ
algorithm. To reduce the failure of satellites’ FL training in one
round, we select Ks satellites with the longest connection time
from the connected satellites in each round (Line 4-5). During
each satellite’s decision phase, we first obtain the transmission
time for the quantized INT model in this connected duration
by the estimation (Line 7), then we adopt a greedy method to
search the feasible solution with the constrained available time
τd − tc − ts,g (Line 13-21). Although this method’s complexity
is very high, the practical execution speed is not slow due to
the small number of available satellites, bitwidth supported by
the satellites, and the blocks of the model. With the obtained
decision vector Γ, global model is quantified into INT format
and dispatched to the corresponding satellite. Finally, in order
to ensure the training accuracy, each satellite dequantizes the
received INT model into FP32 model for on-board training
(Line 23-25).

IV. PERFORMANCE EVALUATION

A. Experimental Settings

1) Datasets and Models: We adopt a real-world satellite
imagery dataset and an open-source image dataset as shown
in Table I: Functional Map of the World (fMoW) [55] and
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TABLE I
DATASETS USED IN EXPERIMENTS FOR ONE TASK: IMAGE CLASSIFICATION. IC

(IMAGE CLASSIFICATION), OD (OBJECT DETECTION), IS

(INSTANCE SEGMENTATION)

L-SUN [56] on 3 classic CNN models: DenseNet121 [57],
VGG16 [58] and ResNet18 [24]. These three models are popular
for image classification, which contains 6, 6, and 5 blocks
respectively.
� fMoW is a classic world functional map dataset, which

contains more than 1 million high-resolution images with a
total of 63 categories. We generate a sub-dataset by random
sampling the data for each class, setting 0.2 as the fraction
of data to be sampled. In sub-dataset, each high-resolution
image is resize to 224*224.

� L-SUN is a classic image classification dataset, which
contains approximately 59 million images with 10 scene
categories and 20 object categories, and the fraction of data
to be sampled is set as 0.01.

2) Simulated Platform: We have implemented SatelliteFL on
a simulated platform atop FedML [59], a popular FL framework
with real-world communication and computation simulation.
We also followed the prior work [2] to plug all the configurations
as an example constellation, named Planet Lab with 12 ground
stations and 191 satellites. We follow the prior work [60], [61],
[62] to divide the two datasets into non-iid sub-dataset, and
assigned them to 191 satellites. Here, we use the cote simulator
to obtain the connection information same as FedSpace [2].
Specifically, to establish a clear correspondence between train-
ing rounds and the clock time, we set per training round period
with τ = 15 minutes, and there are 96 training rounds in one
day. The connected satellites with their connection information
in each round are also obtained from this simulation platform.
Moreover, to simulate the dynamic variations in the satellite-
to-ground link, we attempted to model the ground-to-satellite
bandwidth using a Gaussian distribution with a mean of bg,s and
a standard deviation of bg,s/3. All the experiments are conducted
on a Ubuntu 18.04 Linux server with 8 NVIDIA A40 GPUs.

3) Metrics: Apart from the convergence accuracy of the test-
ing data, we also report the following two metrics that closely
relate to the satellites. (i) Clock time is the end-to-end training
time perceived by the satellites, including multiple rounds of
per-round FL training until model convergence. (ii) Bandwidth
utilization of ground-to-satellite link refers to the ratio of the
valid data size to the total data size that can be transmitted by
the ground station during each connection duration, denoted
as u_ratio. The total data size can be calculated as bg,s · τd,
which means if there is enough data required to be transmitted
to the satellite throughout the connection duration τd with the
ground-to-satellite bandwidth bg,s. The valid data size here
refers to the size of actual transmitted model parameters and
it must be a complete one with all parameters, because part of
parameters cannot be used for the satellite’s on-board training.

So we have

u_ratio =
α(|ω|)
bg,s · τd , andα(|ω|) =

{|ω|, success
0, fail.

(12)

We fix the sum of computation time tc and communication time
ts.g as 3 minutes based on the profiled measurement on Jetson
TX2 and 1 Gbps satellite-to-ground bandwidth. Note that the
average connection window is 6 minutes as shown in Fig. 3(b),
and the maximum u_ratio is about 50% on average.

4) Baselines: We use three baselines in experiments to
demonstrate SatelliteFL’s benefits are: (i) FedAvg [16]: the
traditional FL protocol using fully FP32 format on the ground.
(ii) Vanilla SatelliteFL (vanilla): using naive uniform bitwidth
quantization in satellite-ground FL framework as described in
Analysis of P1 of Section III-B. (iii) FedSpace [2]: a state-of-
the-art satellite-ground FL framework using an adaptive buffer
to balance the synchronous and asynchronous training phases.

B. Experimental Results

1) End-to-End Performance: We show the overall results of
SatelliteFL on the two metrics compared to baselines when
using bg,s=400 as the default setting. Fig. 8 shows the time-
to-accuracy performance of SatelliteFL compared to three base-
lines, which demonstrates that our SatelliteFL framework with
ProBQ algorithm greatly improves both the convergence speed
and the model accuracy. Fig. 9 shows the performance of band-
width utilization ratio, which reveals that it also highly improves
the bandwidth utilization of the ground-to-satellite link.

As shown in Fig. 8, SatelliteFL greatly improves both the con-
vergence speed and model accuracy compared with baselines,
Compared to FedAvg with DenseNet121 on fMoW and L-SUN,
SatelliteFL obtains 31.6% and 36.9% higher convergence accu-
racy, and it takes 42.1% and 44.2% fewer days to converge.
Moreover, for ResNet18 and VGG16, FedAvg’s accuracy is
even less than 10% without any useful learned information.
And FedSpace achieves the same result when using VGG16
model. This is because they are not designed for transmission
delay-constrained scenarios, but only transmit current update
information as possible, thus the update information is likely
to be interrupted. Compared to FedSpace with DenseNet121
on fMoW and L-SUN, SatelliteFL obtains 10.7% and 1.8%
higher convergence accuracy, and it takes 45.8% and 47.5%
fewer days to converge. But for ResNet18 on these two datasets,
FedSpace only achieves 13.3% and 34.7%, which is 33.8% and
23.4% lower than SatelliteFL, respectively. Vanilla SatelliteFL
with uniform quantization method achieves much better per-
formance than the other two baselines, yet, compared with our
SatelliteFL with ProBQ, its time-to-accuracy performance still
has obvious shortcomings. For example, using ResNet18 on
fMoW and L-SUN, ours accuracy is 3.4% and 12.1% higher
than Vanilla, respectively. Even on the other two models, it can
achieve up to 1.7%–7.4% accuracy improvement. The reason is
that ProBQ can retain more effective gradient information when
the ground-to-satellite bandwidth fluctuates and even decreases.
Such improvements are mostly attributed to the progressive
quantization design as described in Section III-B2.
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Fig. 8. Time-to-accuracy performance of our SatelliteFL with ProBQ (ours) compared with three baselines: FedAvg, Vanilla SatelliteFL (vanilla) and FedSpace.

Fig. 9. Utilization ratio (u_ratio) of ground-to-satellite link bandwidth when
comparing our SatelliteFL with ProBQ (ours) and three baseline algorithms
using three models on two datasets. Considering the on-board training time and
data transmission time across satellite-to-ground link, the maximum u_ratio is
only about 50% on average (details in Section IV-A).

Apart from the time-to-accuracy performance, we also eval-
uate the utilization ratio of ground-to-satellite link bandwidth
in Fig. 9. The results show that the u_ratios of FedAvg and
FedSpace are very low, almost close to 0, due to the frequent
failure of ensuring the per-round FL training with one connection
window. Among these two algorithms, FedSpace respectively
achieves 30.2% and 31.4% with DenseNet121 on fMoW and
L-SUN, but they are still 17.2% and 16% lower than our
SatelliteFL. Our SatelliteFL with ProBQ can also improve the
u_ratio (3.9%–8.3%) of Vanilla SatelliteFL using naive uniform
quantization method. For example, using ResNet18 on fMoW,
our SatelliteFL with ProBQ achieves 50.5% u_ratio, which is
8.3% higher than Vanilla SatelliteFL. The reason behind is that
ProBQ designed in our SatelliteFL has progressively expanded
the quantization bitwidth on the most of blocks, which can
improve the system efficiency under delay constraints.

2) Link Analysis: We further study the performance of Satel-
liteFL under different ground-to-satellite bandwidth compared
to baselines. We keep the hyper-parameter settings the same as
the above end-to-end settings. Fig. 10 shows the accuracy and
u_ratio of different methods under varying ground-to-satellite
bandwidth. We set bg,s= 160, 240, 320, 400, 480, and 560, and
train DenseNet121 on fMoW in this experiment.

As observed, ProBQ only reduces accuracy performance by
9.1%–15.6% under poor bandwidth conditions, whereas the

Fig. 10. Performance of our SatelliteFL with ProBQ (ours) compared with
three baselines under varying bandwidth.

other three methods decrease accuracy by 19.8%–30.3%, 6.8%–
44.1%, and 14.9%–36.5%, respectively. The rationale is that,
compared to FedAvg and FedSpace, ProBQ strives to preserve
effective update information as much as possible under limited
bandwidth conditions. In contrast to Vanilla SatelliteFL’s fixed
quantization, ProBQ’s progressive block quantization allows
sensitive blocks with lower bitwidth to retain more useful update
information. More specifically, with lower bandwidth conditions
such as bg,s= 160 and 240, ProBQ reduces only 18.6% and 1.2%
u_ratio, whereas FedAvg and FedSpace struggle to keep the sys-
tem operational with an effective u_ratio. This is because ProBQ
permits the retention of more fragmented update information and
transmits it at a block-wise granularity. In addition, with bg,s >
240, ProBQ can maintain a stable u_ratio close to 50% with
consistent accuracy performance. Vanilla SatelliteFL also can
keep a stable u_ratio close to 40%, while the other two baselines
experience a sharp decline in u_ratio as bandwidth becomes
worse. The rationale is that, within a relatively ample bandwidth
range, each block can retain sufficient useful information for
updates. In contrast, in more constrained bandwidth conditions,
ensuring the availability of enough update information for the
entire model becomes challenging.

3) Sensitivity Analysis: We then dive into the performance
sensitivity of SatelliteFL under varying environments. Specif-
ically, to further explore SatelliteFL’s performance under poor
bandwidth conditions, we set bg,s=240 according to the observa-
tion drawn from the above link analysis discussed, while keeping
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Fig. 11. Impacts of SatelliteFL settings. V (Vanilla). D (Default): order of original front-to-back. S (Size): order of parameter size. R (Random): order of random
shuffling. O (Ours).

the remaining hyper-parameters consistent with the end-to-end
configuration.

Impacts of Block Ordering Methods. Fig. 11(a) reports the
impact of block ordering methods in our SatelliteFL on the
performance of the above two metrics. We introduce another
three kinds of ordering methods into Vanilla SatelliteFL: (i) The
default method (Default) orders the blocks based on the original
front-to-back order; (ii) The size method (Size) orders the blocks
based on the order of parameter size; (iii) The random method
(Random) orders the blocks based on a random shuffle of all the
blocks. We set bg,s=240 and train DenseNet121 on fMoW in
this experiment.

The results in Fig. 11(a) show the compared performance to
ProBQ (“Ours”), Vanilla, Default, Size, and Random algorithms.
For the accuracy performance, ProBQ still outperforms other
algorithms 8.4%–14.6%, this is because ProBQ can achieve a
near-optimal choice on block priority under poor bandwidth,
to give priority guarantee on the sensitive blocks remaining
information with a higher bitwidth. Note that, whatever the
block priority we choose in SatelliteFL, the last four methods
with block-wise quantization can obtain 6.7% (on average)
higher accuracy and 19.1% (on average) higher u_ratio. The
reason for such performance improvement is that our block-wise
strategy can make more efficient use of redundant fragmented
ground-to-satellite links under poor bandwidth.

Impacts of Bandwidth Variation. Fig. 11(b) shows the accu-
racy and u_ratio on different settings of bandwidth variation.
We set bg,s= 240 and change the standard deviation = 40,
80, 120, 160, and 200 in Gaussian distribution to simulate the
dynamic fluctuations of ground-to-satellite bandwidth, and then
train DenseNet121 on fMoW in this experiment.

As observed, Fig. 11(b) illustrates the performance of Satel-
liteFL under varying degrees of bandwidth fluctuations. With
an increase in the degree of bandwidth variation, the u_ratio
decreased by 1.1%–2.4%, while the accuracy remained nearly
constant, fluctuating within approximately 1%. The underlying
reason for this phenomenon is that ProBQ can effectively adjust
the different bitwidth for parameter quantization under varying
degrees of dynamic bandwidth changing, thereby maintaining
model accuracy as stably as possible.

Impacts of Connection Window. Fig. 11(c) shows the accuracy
and u_ratio on different settings of connection window. We set
bg,s= 240 and train DenseNet121 on fMoW with connection
window = 4, 5, 6, 7, 8, and 9 minutes in this experiment.

The results in Fig. 11(c) show the benefit of increasing the
connection window time. It shows that SatelliteFL can improve
accuracy by 39.5%–59.6% and 2.1×–3.7× u_ratio, which is
due to ProBQ being able to retain more update information and
benefit from a richer connection window time. Note that, when
the connection window time> 6, the u_ratio exceeds 50%, this is
because ProBQ has more transmission time to transmit gradients
across the ground-to-satellite link and maintain a stable accuracy
performance.

Impacts of Connected Satellite Numbers. Fig. 11(d) shows the
accuracy and u_ratio on different settings of connected satellites
numbers. We set bg,s= 240 and train DenseNet121 on fMoW
with connected satellites number = 3, 4, 5, 6, and 7 in this
experiment.

Fig. 11(d) illustrates the performance on SatelliteFL for
different numbers of connected satellites. As the number of
connected satellites increases, the u_ratio abnormally decreases
by 0.6%–8.9%, the accuracy first increases by 5.1%, and then
also abnormally decreases by 0.9%–1.9%. The reason behind the
abnormal phenomenon is that when connected satellite numbers
increase, there is a greater probability of selecting satellites with
worse link conditions, and these satellites have a poor u_ratio,
which also affects the final accuracy.

V. DISCUSSION AND LIMITATION

In our research, we build upon the foundational work pre-
sented in prior work [2], which assumes the existence of a steady
(with some dynamic changes) communication link during each
connection window. However, it is important to acknowledge
that in real-world satellite-ground communication scenarios,
achieving such steadiness can be challenging due to varying dis-
tance between the satellite and the ground station or atmospheric
conditions like rainfall-induced signal attenuation. The presence
of an uncertain communication link can pose difficulties in
meeting our objective of completing the per-round FL training
within each connection window.

In our future work endeavors, we aim to enhance the success
rate of parameter transmission by developing predictive models
for link uncertainty. Additionally, we intend to explore redundant
training strategies and missing-parameter recovery mechanisms,
minimizing the need for re-transmissions following parameter
transmission failures based on the concept of bounded-loss
tolerance commonly applied in ML tasks [63]. Furthermore,
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the images collected by Earth observation satellites lack labels,
posing a challenge in efficiently utilizing this raw data. We
intend to explore effective methods for providing soft labels
to these raw data, focusing on unsupervised training [64] and
leveraging the few-shot capabilities exhibited by current large
models [65].

VI. CONCLUSION

SatelliteFL is a communication efficient FL framework across
satellites and ground stations that focuses on three unique
challenges introduced by the dynamic orbits of LEO satellites:
limited ground-to-satellite bandwidth, short connection window
and long connection cycle. It formulates the goal as a delay-
constrained optimization problem to maximize the model utility
while guaranteeing not to exceed the connection window. To
solve this problem, it leverages a progressive weight quantiza-
tion method that fine-grained quantizes each block of model
with a unique quantization bitwidth. Experiments show that
SatelliteFL can accelerate the convergence by 1.8×(on average,
up to 2.8×) and improve the bandwidth utilization ratio by
4.5×(on average, up to 9.3×) with acceptable accuracy loss.
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