
Collaborative Inference in DNN-based Satellite
Systems with Dynamic Task Streams

Jinglong Guan1, Qiyang Zhang1,2∗, Ilir Murturi2, Praveen Kumar Donta2, Schahram Dustdar2, Shangguang Wang1
1State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunicatons, Beijing, China
2Distributed System Group, TU Wien, Vienna, Austria

{mr guanjl;qyzhang;sgwang}@bupt.edu.cn;{imurturi;pdonta;dustdar}@dsg.tuwien.ac.at

Abstract—As a driving force in the advancement of intel-
ligent in-orbit applications, DNN models have been gradually
integrated into satellites, producing daily latency-constraint and
computation-intensive tasks. However, the substantial computa-
tion capability of DNN models, coupled with the instability of
the satellite-ground link, pose significant challenges, hindering
the timely completion of tasks. It becomes necessary to adapt to
task stream changes when dealing with tasks requiring latency
guarantees, such as dynamic observation tasks on the satellites.
To this end, we consider a system model for a collaborative
inference system with latency constraints, leveraging the multi-
exit and model partition technology. To address this, we propose
an algorithm, which is tailored to effectively address the trade-
off between task completion and maintaining satisfactory task
accuracy by dynamically choosing early-exit and partition points.
Simulation evaluations show that our proposed algorithm signif-
icantly outperforms baseline algorithms across the task stream
with strict latency constraints.

Index Terms—Satellite inference, Task offloading, Multi-exit
DNNs, Model partitioning

I. INTRODUCTION

With the continuous technological advancements and in-
creasing drive for space exploration, recent years have wit-
nessed the proliferation of Low Earth Orbit (LEO) satellites
such as Telesat and SpaceX [1]. Today, around 44% of in-
orbit LEO satellites are dedicated to Earth Observation (EO)
purposes [2]. Many machine learning algorithms, especially
Deep Neural Networks (DNN), are employed for the inference
of raw image observation applications such as AI-enabled
forest fires [3].

The prevailing approach suggests transmitting all observa-
tions to the ground for image analysis, utilizing a traditional
method referred to as the “bent pipe” architecture [4]. How-
ever, due to the typically unreliable and intermittent satellite-
ground environment, a significant amount of raw observations
remains untransmitted in a limited time. An alternative solu-
tion involves executing DNN models directly on the satellite
where the data is generated [5]. However, the majority of
LEO satellites are equipped with limited computing power
and small physical size, which pose challenges in handling
the high computational demands associated with complex

*Corresponding author

DNN models. Much attention has been given to offloading in-
orbit computing tasks to the ground as a promising solution.
Typically, existing efforts focus on offloading tasks to ground
stations for processing, provided that the satellites are within
the coverage of specific ground stations. While straightforward
and practical, this solution can suffer from a computational
bottleneck due to the limited constraints of each satellite.

To achieve efficient inference offloading, many state-of-the-
art systems like Tracking and Data Relay Satellite (TDRS) and
European Data Relay System (EDRS) involve satellite relays
in High Earth Orbit (HEO) satellites for task offloading [6].
It is reported that even a free-space laser link achieves up
to 1.8 Gbps data rate [7]. When faced with extensive and
diverse computational demands, it is necessary to collaborate
the efforts of multiple satellites. The task owner distributes
inference tasks across multiple satellites, with each satel-
lite equipped with high-performance commercial, off-the-shelf
(COTS) computational hardware.

Despite these efforts, it remains challenging for the in-
ference task streams within the limited time constraints in
potentially extreme factors [6] such as poor network condi-
tions and excessive task arrivals. To meet the requirement of
different EO tasks, which can range from demanding high
precision to partial precision, multiple satellites are required
to collectively perform observations, with different satellites
handling specific computational tasks. In such a computing
environment characterized by diversity and dynamics, multi-
exit mechanisms are crucial to address these issues. Multi-
exit mechanisms are introduced as a solution to reduce a
significant computational load by selectively activating an
early-exit (EE) point [8] within a multi-layer network, even
if it leads to inference degradation. Meanwhile, partitioning
multi-exit models for multiple task stream applications re-
mains to be fully considered, which can assist satellites infer
cooperatively. However, the simultaneous management of EE
points and partition points adds complexity to the inference
system, especially when dealing with evolving task profiles.

This paper proposes an efficient framework for inference
offloading involving multiple satellites by partitioning multi-
exit DNN models, which consist of one HEO satellite and
multiple LEO satellites. We divide the inference task into
two parts, with the task owner executing the initial portion

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 3803IC
C

20
24

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-7
28

1-
90

54
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C5

11
66

.2
02

4.
10

62
25

90

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 09:25:43 UTC from IEEE Xplore. Restrictions apply.

of the DNNs and offloading the remaining part to other
task executors. The key challenge lies in determining the
optimal EE and partitioning points for each task, based on
specific task demands and the current system status. We
need to consider the trade-off between task completion and
maintaining satisfactory task accuracy. When prioritizing high
inference performance for each task, some tasks may fail to
meet their deadlines due to prolonged waiting times. In turn,
if we solely focus on increasing system throughput, overall
inference performance may not meet expectations. Therefore,
this paper needs to formulate this issue and design efficient
algorithms to address it.

The main contributions of our paper are as follows.
• We formulate an optimization problem by considering

inference tasks and computing models to trade-off be-
tween the number of tasks completed and maintaining
satisfactory task accuracy under the time limitations.

• We introduce a task gain-aware method based on task
completion and task accuracy, aiming to derive an effi-
cient solution to the formulated problem.

• Simulation evaluations show that our proposed algorithm
significantly outperforms the baseline algorithms across
the task stream.

II. BACKGROUND AND RELATED WORK

“Bent pipe” architecture. Most LEO satellites have re-
cently employed a “bent pipe” architecture, where satellites
function as data-transmitting relays rather than data-processing
capabilities. For example, Giuliari et al. [9] introduced an
inter-networking approach that involves ground stations serv-
ing as gateways for satellite-ground communications, aimed
at enhancing satellite data transmission efficiency. Cheng et
al. [10] proposed an integrated satellite-ground computing
architecture that utilizes satellites to enable access to cloud
resources on the ground. However, data transmission be-
tween satellites and the ground is significantly hindered by
an unstable communication link and intermittent availability.
Consequently, this results in a substantially lower transmission
rate compared to the rate at which data is generated onboard,
leading to a noteworthy increase in the overall latency of all
tasks.

In-orbit computing. This paradigm has attracted much
attention in the satellite computing domain. Denby et al.
[4] proposed the orbital edge computing framework that per-
forms data filtering on the satellites, which aims to enhance
downlinking efficiency in saturated satellites while considering
limited computational capacity. Denby et al. [11] recently
presented a novel computing architecture that maximizes
the utility of saturated satellite-ground downlinking while
alleviating computational bottlenecks. Therefore, for existing
computing schemes, the entire inference process is executed
on satellites. The limited computing resources and low energy
acquisition capabilities of this approach also place a heavy
burden on satellites. To address these issues, we investigate
a model partitioning strategy for fine-grained computational
resource optimization based on AI-oriented tasks.

Model partitioning for offloading inference. Some ef-
forts suggest that model partitioning can be used to offload
inference tasks from task owners [12], [13]. Neurosurgeon
[14] proposed layer-wise partition strategies to adaptively of-
fload model computation. JointDNN [15] was a collaboration
framework that employs both model training and inference to
achieve resource optimization. In contrast, aiming at efficient
inference of AI-enabled satellite services, our work pursues a
distinct objective to achieve a trade-off between task accuracy
and the number of completed tasks.

Multi-exit models for boosting task inference. There has
been a growing interest in partitioning multi-exit models to
enhance the performance of DNNs. For example, EDeepSave
[16] aimed to improve the inference performance by the
EE mechanism to avoid interruption when handing over to
the mobile network. Edgent [17] proposed a model of DNN
partitioning to maximize inference accuracy while satisfying
latency constraints. While multi-exit partitioning models for
satellite services seem promising, they are yet to be fully
explored. Therefore, in the context of a more realistic setting
with uncertain task arrivals and task current state, we design
an efficient solution to facilitate decision-making through
adaptive learning-based scheduling in response to dynamic
system states.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates the time-slotted task stream system, which
includes one HEO satellite and multiple LEO satellites. For
each satellite, we deployed the pre-trained models for sub-
sequent adaptive inference tasks in advance. HEO satellite
images typically feature high spatial resolution and extensive
coverage, while LEO satellite images offer even greater res-
olution and more frequent observations. The selection of the
appropriate satellite depends on the specific task requirements.
We describe the workflow of an inference system as follows:
1) A task request includes current task requirements when it
arrives. Specifically, for HEO imaging tasks, the HEO satellite
captures the image first and stores it in the task queue; for LEO
imaging tasks, the LEO satellite transmits the task information
(e.g., task type, data size, time constraint) to the HEO satellite.
In the case of imaging tasks, the HEO satellite determines
offloading solutions and transmits the offloading decision back
to the LEO satellite; 2) When LEO satellites perform imaging
tasks, they receive offloading information, process the front
part, and send the remaining part to the HEO satellite. Then,
the HEO satellite handle these tasks on a First-Come-First-
Served (FCFS) principle. LEO satellites receive the processing
result once the HEO satellite complete the task. During the
HEO satellite imaging tasks, the HEO satellite process the
front part of DNNs first and then send the rest to LEO
satellites. Then, LEO satellites handle the rest of tasks. For
ease of discussion, we do not consider the time it takes for
the final results from the HEO satellite for LEO imaging tasks
[18].

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

3804

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 09:25:43 UTC from IEEE Xplore. Restrictions apply.

Task Queue
… E D C B Task Queue

… ? ? ? ? A

Offloading Problem Runtime Optimizer

HEO Satellite

1) Task Request

Imaging on LEO Imaging on HEO?

2) Task
Profile

3)Offloading
Decision

LEO Satellite

(a) Decision stage.

… E D C B … 1 C a B A

Offloading Decision Queue

… … … … A’

LEO Satellite HEO Satellite

Task

Process
Data

Result

Task

Process
Data

Result

4) LEO
Process

Data

5) HEO
Process

Data

(b) Implementation stage.

Fig. 1: The workflow of collaborative task stream offloading
system.

A. Inference Task Model

Let the task be denoted by Tn = (Sn, Dn, Ln, tAn), where
Tn indicates the n-th task information in the task stream, Sn

indicates task type, Dn indicates task size, Ln indicates the
maximum allowable task time constraint, and tAn indicates the
arrival time. Given that there is a proportional relationship
between Ln and Dn, we have Ln = k × Dn, k ∈ N .
Meanwhile, the number of EE points is M and the layer
number in the i-th EE point is Mi. Further, the EE and the
partition points of the n-th task are En and Pn respectively,
with the constraints 0 ≤ En ≤ M , 0 ≤ Pn ≤ MEn

.
Inspired by [15], processing time and transmission data size

during handover are application-specific based on profiling.
The prediction model can provide accurate predictions in
practical applications, characterized by high reliability and
minimal implementation costs. Consequently, we use a linear
regression-based prediction model, which can accurately esti-
mate the inference time and output data size of each layer
in the multi-exit model, considering both LEO and HEO
satellites. For example, we consider the case of LEO satellites.
We utilize timeline to record the inference time and fit the
inference time of each model layer with a linear function.
For the input data size Dn, fd

i,j(Dn) represents the predicted
inference time of the jth layer in the ith EE point, which is

executed on the LEO satellite if d = 0 or the HEO satellite if
d = 1. If d = 2, it represents the predicted output data size of
the j-th layer in the i-th EE point of the model.

B. Computing Model
When selecting En and Pn, we divide the entire system

into three stages: First, when the imaging task is executed on
the LEO, we compute task Tn’s first-stage processing time
as tP1

n =
∑Pn

i=1 f
0
En,i

(Dn), or tP1
n = 0 when the imaging

task is executed on the HEO; Second, when imaging task
is executed on the LEO, we can compute task Tn’s second-
stage processing time as tP2

n =
∑MEn

i=Pn+1 f
1
En,i

(Dn), or
tP2
n =

∑Pn

i=1 f
1
En,i

(Dn); Third, when imaging task is executed
on the LEO, we can compute task Tn’s third-stage processing
time as tP3

n = 0, or tP3
n =

∑MEn

i=Pn+1 f
0
En,i

(Dn).
We denote the transmission time of inter-satellite links as

LISL
latency, which is denoted as follows:

LISL
latency =

len (D)

w (SL, SH)
+

Q(SL,SH)

c
(1)

where SL denotes the LEO satellite, SH denotes the HEO
satellite, D denotes the transmitted data size between LEO
and HEO, Q(SL,SH) denotes the length of the transmission
link between HEO and LEO, c denotes the speed of laser
communication. We denote the transmission rate of data
w (SL, SH) as follows:

w (SL, SH) = B log2

(
1 +

Pr(SL, SH)

kBTsBγ

)
(2)

where B denotes the bandwidth, kB denotes the Boltzmann’s
constant, Ts denotes the system noise temperature, γ denotes
the Signal-to-Noise ratio, Pr (SL, SH) denotes the received
signal strength. The calculation formula is as follows:

Pr (SL, SH) = PtGtGr

(
4πQ(SL,SH)f

c

)−2

(3)

where Pt denotes the transmit power, Gt denotes the receive
gain, Gr denotes the transmit gain, f denotes the carrier
frequency. So the transmission time between LEO and HEO
satellites is

ttrn =
fd
En,Pn

(Dn)

LISL
latency

(4)

Given that adjacent tasks may be generated from different
satellites, there exists at most one task queue on each satellite.
we denote that task Tb and Tn are generated adjacently on
the same satellite, one after another i.e., Tb followed by
Tn. Further, we can compute that the time point when LEO
satellite begins to process Tn is tS1

n = max(tAn , t
O1

b), the
time point when LEO satellite gets ready to transmit Tn

is tO1
n = tS1

n + tP1
n . The time point when HEO satellite

starts to inference Tn is tS2
n = max(tO1

n + ttr1n , tO2

b), the
time point when Tn is finished is tO2

n = tS2
n + tP2

n . Then,
the time point when the LEO processes the task Tn finally
is tS3

n = max(tO2
n + ttr2n , tO3

b), the time point when Tn is
finished is tO3

n = tS3
n + tP3

n . Finally, we compute the total
inference time for Tn is TP

n = tO3
n − tAn .

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

3805

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 09:25:43 UTC from IEEE Xplore. Restrictions apply.

C. Problem Formulation

For the multi-exit model, each EE point has its specific
level of accuracy due to different computing amounts. Thus
the accuracy of EE point En is donated by AEn

, where
0 ≤ AEn

< 1. In this case, AEn
= 0 if and only if

En = 0. Feng et al. designed a cost-computing function
that tradeoff inference performance and latency by introducing
a novel weight parameter [19]. This enables the selection
of a descendant model that satisfies the specifications of
resource-constrained satellites. Similarly, striving to enhance
task accuracy while completing as many tasks as feasible, we
introduce an exponential function and define task gain Gn of
the n-th task as

Gn = ⌈An⌉+
α

1 + e−β(An−Amin)
(5)

where rounding up the inference accuracy ⌈An⌉ quantifies the
number of tasks completed in the system, while the Sigmod
function associated with the inference accuracy represents
the user’s satisfaction with task performance. Specifically,
Amin is the minimum branchy model inference accuracy.
We introduce two parameters α >0 and β >0, where the
performance improvement factor α controls the significance
of task inference performance. And β is used to finely adjust
the influence of changes in accuracy.

Finally, we formulate the task stream with N tasks in the
system as an optimization problem:

max
En,Pn

N∑
n=1

Gn

s.t. tS1
1 = tA1 , (6)

tO3
n ⩽ tAn + Ln,

0 ⩽ En ⩽ M,

0 ⩽ Pn ⩽ MEn
.

where n ∈ N , and the first constraint initializes the first task,
the second constraint offers the inference time limitation of
the task, the later constraints provide the feasible range of En

and Pn, respectively.

D. Problem Analysis

The objective of this problem is to efficiently tackle the
adaptive task stream challenge, involving the tradeoff between
inference performance and task latency. This is achieved by
implementing efficient partitioning and offloading techniques
for branch DNN models across the entire inference process. In
this case, we consider the total number of combinations of EE
and partition points as H . When selecting the hth combination
of these points, the total inference time and task gain of the
mth task are Pm

h and Gm
h , respectively. Here we transform

the formulated problem to a group knapsack problem with H
items, where each item needs to be packed into the knapsack.
The volume and value of the hth item from the mth groups
correspond to Pm

h and Gm
h , respectively. The total capacity

of the entire backpack is tAN +LN . Therefore, the formulated

Algorithm 1: Task Gain-aware Decision
Input: N : the task number;

Dn: the input data size of task Tn;
Ln: the time constraint of task Tn;
tAn : the arriving time of task Tn;

Output: Maximum task gain G
1: Initialize G(0, t) = 0 // Initialization
2: for i = 1 to N do
3: if tAi−1 + Li−1 < tAi then
4: G(i− 1, tAi) = G(i− 1, tAi−1 + Li−1)

// Update the recursion task gain value.
5: end if
6: for j = tAi to tAi + Li do
7: Update G(i, j) according to Eq. (7)
8: end for
9: end for

Algorithm 2: Optimal Point Selection
Input: M : the number of EE points;

{Mk|k = 1, ...,M}: the number of layers of the EE
points k;
Dn: the input data size of Tn;
Ln: the time limitation of Tn;
LISL
latency: the inter-satellite transmission rate;

fd
i,j : the predictive model in the work

Output: Optimal En, Pn

1: for k = M to 1 do
2: En = k
3: Cn = minPn=1,...,Mk

{tO3
n − tAn }

// Divide the model EE points in sequence and
select the smallest computing time.

4: if Cn ≤ Ln and An ≥ A∗
n then

5: record En, Pn, An

6: end if
7: return En, Pn when An is maximum
8: end for
9: return NULL

problem maximizes the total value of items that can be placed
into a backpack. Hence, the problem addressed in this work
is classified as NP-hard.

IV. TASK GAIN-AWARE INFERENCE OFFLOADING
ALGORITHM

To achieve the maximum task gain, this work introduces a
task gain-aware method designed to identify the optimal EE
and partition points for the task. We begin by calculating the
maximum gain of each task at each time slot, and ultimately
obtain the overall maximum gain using Algorithm 1. In this
case, we can forecast task stream information including the
input data, arrival time, time limitation, and total task number.
We define the maximum gain G(i, j) with the ith tasks and
the limitation of jth time slots:

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

3806

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 09:25:43 UTC from IEEE Xplore. Restrictions apply.

C
o

nv

LR
N

Po
o

ling

C
o

nv

LR
N

Po
o

ling

C
o

nv

C
o

nv

C
o

nv

Conv

Pooling Pooling Pooling

FC FC FC

…

Po
o

ling

FC

EE 1 EE 2 EE 3

EE 4

Fig. 2: AlexNet model consists of 4 EE points. When we
consider task failure as another particular case when starting,
AlexNet model has 5 EE points.

G(i, j) = max
tAi ≤t<j

{G(i− 1, j),G(i− 1, t) + ⌈S(Di, j − t)⌉+

α
1

1 + e−β(S(Di,j−t)−A∗
i)
}

(7)

Meanwhile, S(D, t) is used to denote the highest accuracy
of EE points with the data size D and latency constraint t.
Algorithm 1 first initializes the array G(0, t) (1 ≤ t ≤ tAN +
LN). Then, when the task i arrives, if the sum of the arrival
time of the previous round and the latency constraint is less
than the current task’s arrival time, we update G(i− 1, tAi) to
G(i− 1, tAi−1 + Li−1). At the same time, for each time point
j, we loop from tAi to tAi + Li recursively, comparing the
maximum gain of the previous round G(i− 1, j). Thus we
can obtain the maximum G(i, j).

Algorithm 2 selects the optimal points with both the highest
accuracy and time constraints through an exhaustive search
of the EE and partition points. When the task Tn arrives,
for each branch in multi-exit model, we select the partition
point in sequence and calculate the total processing time.
Then, we select the minimum total processing time and the
corresponding partition point is the best choice for the current
task and branch. Additionally, since each branch of the multi-
exit model corresponds to a task accuracy An, we can obtain
a series of An for the current task and the corresponding
branch. Among those, we select the maximum An. Finally,
the corresponding EE and partition points are the En and Pn

that the current task should be associated with.

V. SIMULATION EVALUATIONS

In this section, we evaluate the performance of our proposed
algorithm with the following two algorithms:

• Greedy: The algorithm makes the offloading decisions
according to the information of the current tasks system,
disregarding the interaction between adjacent tasks.

• Random: The algorithm makes randomly the offloading
decisions without task system information.

A. Experiment Setup

We use the satellite constellation StarLink and HEO satellite
as references to simulate inter-satellite connectivity in orbit,
and use various computing capabilities of LEO satellites by
adjusting the number of CPUs, operating peaks, etc. The
dataset used in the simulation is CIFAR-10 and each image is
categorized into one of ten classes. The dataset is also used
for model training, simulating the tasks, and evaluating the
proposed algorithm. Additionally, we utilize widely-used clas-
sification as our evaluated DNN-based inference application
and adopt an 8-layer AlexNet model including 4 EE points.
AlexNet model we consider is shown in Fig. 2. When we
regard task failure as another particular case when starting, this
model consists of 5 EE points. Therefore, after training, the
corresponding inference accuracy of 5 EE points is [0, 0.527,
0.623, 0.697, 0.743]. In the evaluation, task generation follows
Bernoulli distribution with p = 0.1, ensuring that at most
one task is generated during each time slot. The input is the
images to be inferenced in the task system, where the number
of images follows a normal distribution within [1,10]. Every
time slot is set to 3 seconds. In addition, the hyperparameters
α and β are set to 0.1 and 16, respectively.

We consider three vital metrics: the overall task gain, task
completion rate, and average task latency. The overall task gain
refers to Eq. (6), which considers the two task performance
in the entire system. Task completion rate is calculated by
dividing the number of tasks completed by the number of
tasks arrived, which allows us to study the impact of system
decisions on task completion from the user’s perspective. The
average task latency is calculated by summing the differences
between the completion time of completed tasks and their
arrival time, and then dividing it by the number of tasks
completed, which indicates the impact of system decisions on
the average task latency.

B. Experiment Results

As illustrated in Fig. 3, our algorithm consistently demon-
strates superior performance compared to the baseline algo-
rithms. As expected, with the intensive number of task arrivals,
our algorithm demonstrates approximately linear growth in
the overall system objective. Notably, when the system’s task
arrival number is 300, our algorithm outperforms the greedy
and random algorithms by 19.39% and 61.48%, respectively.
This improvement can be attributed to our algorithm’s consid-
eration of the interdependence between adjacent tasks in the
task system, which incorporates both the average accuracy of
tasks and the number of completed tasks. Furthermore, Fig. 4
demonstrates that our algorithm consistently outperforms the
Greedy and Random algorithms, regardless of variations in the
task arrival rate. Additionally, the excellence of our algorithm
becomes progressively more apparent as task arrival rates
increase, highlighting its remarkable performance in complex
task scenarios.

Next, we investigate the task completion rate of all algo-
rithms under varying numbers of task arrivals, as shown in
Fig. 5, and find our algorithm’s superiority over the other

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

3807

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 09:25:43 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300
Task Nums

0

25

50

75

100

125

150

175

200

G

Ours
Greedy
Random

Fig. 3: The total gain in differ-
ent the number of tasks.

0.05 0.10 0.15 0.20 0.25
Task Arrival Rate P

100

120

140

160

180

200

G

Ours
Greedy
Random

Fig. 4: The total gain under the
different task arrive rate p.

0 50 100 150 200 250 300
Task Nums

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

 C
om

pl
et

io
n

Ra
te

Ours
Greedy
Random

Fig. 5: The task completion
rate in different task numbers.

50 100 150 200 250 300
Task Nums

0
1
2
3
4
5
6
7
8
9

Ta
sk

 A
ve

ra
ge

 L
at

en
cy

 (
s)

Ours
Greedy
Random

Fig. 6: The average latency in
different task numbers.

algorithms. When the task arrival number is 300, our algorithm
achieves an 18.1% and 55.5% improvement compared to the
Greedy and Random algorithms, respectively. This advantage
originates from our algorithm’s ability to determine the trade-
off between task accuracy and latency constraints. By avoiding
excessive time dedicated to individual tasks, our algorithm
achieves a significantly higher task completion rate.

Finally, we investigate the average task latency of all algo-
rithms under varying numbers of task arrivals, as illustrated
in Fig. 6. Our findings reveal that our algorithm consistently
demonstrates lower latency than other algorithms. When the
task arrival number is 300, our algorithm reduces latency
by 35.6% and 15.3% compared to the greedy and random
algorithms, respectively. This reduction can be attributed to our
algorithm’s comprehensive consideration of both average task
accuracy and the number of completed tasks. By prioritizing
efficient task completion while maintaining accuracy, our
algorithm effectively minimizes average task latency.

VI. CONCLUSION

The paper proposes a framework for collaborative intelligent
inference for various satellite inference tasks based on multi-
exit model and model partition. The framework aims to make
an efficient trade-off between task completion and the average
inference accuracy of DNN-based applications. We analyze the
problem theoretically and design a task gain-aware algorithm
to solve this issue. Simulation evaluations show that the
proposed algorithm outperforms that of baseline algorithms,
especially with intensive tasks and strict time constraints.

ACKNOWLEDGMENT

Research has partially received funding from grant agree-
ment No. 101079214 (AIoTwin) and grant agreement
101135576 (INTEND).

REFERENCES

[1] I. Del Portillo, B. G. Cameron, and E. F. Crawley, “A technical
comparison of three low earth orbit satellite constellation systems to
provide global broadband,” Acta astronautica, vol. 159, pp. 123–135,
2019.

[2] (2023) Ucs satellite database. [Online]. Available:
https://www.ucsusa.org/resources/satellitedatabase

[3] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20
years: A survey,” Proceedings of the IEEE, 2023.

[4] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite con-
stellations as a new class of computer system,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 939–954.

[5] C. Wang, Y. Zhang, Q. Li, A. Zhou, and S. Wang, “Satellite
computing: A case study of cloud-native satellites,” arXiv preprint
arXiv:2307.08530, 2023.

[6] Z. Lai, Q. Wu, H. Li, M. Lv, and J. Wu, “Orbitcast: Exploiting mega-
constellations for low-latency earth observation,” in 2021 IEEE 29th
International Conference on Network Protocols (ICNP). IEEE, 2021,
pp. 1–12.

[7] O. Laux, D. Poncet, R. Mager, and K. Schoenherr, “Status of the
european data relay satellite system,” in 2012 International Conference
on Space Optical Systems and Applications (ICSOS), 2012, pp. 9–12.

[8] Q. Zhang, X. Che, Y. Chen, X. Ma, M. Xu, S. Dustdar, X. Liu,
and S. Wang, “A comprehensive deep learning library benchmark and
optimal library selection,” IEEE Transactions on Mobile Computing,
2023.

[9] G. Giuliari, T. Klenze, M. Legner, D. Basin, A. Perrig, and A. Singla,
“Internet backbones in space,” ACM SIGCOMM Computer Communi-
cation Review, vol. 50, no. 1, pp. 25–37, 2020.

[10] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1117–1129, 2019.

[11] B. Denby, K. Chintalapudi, R. Chandra, B. Lucia, and S. Noghabi, “Ko-
dan: Addressing the computational bottleneck in space,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, 2023, pp.
392–403.

[12] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition
deployment and resource allocation for delay-sensitive deep learning
inference in iot,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9241–9254, 2020.

[13] W. Miao, Z. Zeng, L. Wei, S. Li, C. Jiang, and Z. Zhang, “Adaptive
dnn partition in edge computing environments,” in 2020 IEEE 26th
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2020, pp. 685–690.

[14] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[15] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565–576, 2019.

[16] W. Ju, D. Yuan, W. Bao, L. Ge, and B. B. Zhou, “Edeepsave: Saving
dnn inference using early exit during handovers in mobile edge environ-
ment,” ACM Transactions on Sensor Networks (TOSN), vol. 17, no. 3,
pp. 1–28, 2021.

[17] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[18] J. Song, Z. Liu, X. Wang, C. Qiu, and X. Chen, “Adaptive and
collaborative edge inference in task stream with latency constraint,” in
ICC 2021-IEEE International Conference on Communications. IEEE,
2021, pp. 1–6.

[19] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in Pro-
ceedings of the 24th Annual International Conference on Mobile Com-
puting and Networking, 2018, pp. 115–127.

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

3808

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on July 07,2025 at 09:25:43 UTC from IEEE Xplore. Restrictions apply.

